Author Archives: cdifffoundation

Researchers Find the Weaknesses of TcdB One of the Toxins Secreted By the C. diff. bacteria and Main Cause of a CDI

The New study, led by researchers from the University of California, Irvine (UCI), uncovers the long-sought-after, three-dimensional structure of a toxin primarily responsible for devastating Clostridium difficile infection (CDI).

Nature Structural & Molecular Biology, the study titled, “Structure of the full-length Clostridium difficile toxin B,” sheds light on the weaknesses of TcdB, one of the toxins secreted by the Clostridium difficile (C. diff) bacteria and the main cause of CDI.

“This is the first time we could directly see the 3D structure of the gigantic TcdB holotoxin at a near atomic resolution,” said Rongsheng Jin, PhD, a professor in the Department of Physiology & Biophysics at UCI’s School of Medicine and the senior author in the study. “Interestingly, this toxin shapes like a question mark when viewed from a certain angle, and it has been a major question for us as we seek ways to fight the toxin and CDI.”

Also included in the study, the team demonstrated how three antibodies could neutralize TcdB, revealing intrinsic vulnerabilities of the TcdB toxin that could be exploited to develop new therapeutics and vaccines for the treatment of CDI.

…………The current standard of care for CDI involves treatments using broad spectrum antibiotics that reduce the level of C. diff bacteria, but also kill the good bacteria in the gut and disrupt the normal gut microbiome. This approach often leads to frequent disease recurrence (up to 35%).

Recently, the Food and Drug Administration (FDA) issued a warning about an investigational fecal microbiota for transplantation (FMT) procedure for CDI treatment following the death of patient in a clinical trial.

In another action, the FDA approved Bezlotoxumab, a TcdB-neutralizing human monoclonal antibody, as a prevention against recurrent infection.

“There remains a desperate need for more potent and cost-effective therapies for CDI,” said Jin. “The good news is, the 3D structure of TcdB we have identified literally provides a blueprint for the development of next-generation vaccines and therapeutics that have enhanced potency and broad-reactivity across different C. diff strains.”

Already the UCI team is working on a novel vaccine based on the new structure. Early studies show promising results, which Jin hopes to publish soon. In the meantime, The Regents of the University of California has filed a patent on their work.

Researchers contributing to this study include Peng Chen, Kwok-ho Lam, Zheng Liu, Baohua Chen, Craig B. Gutierrez, Lan Huang and Rongsheng Jin from UCI; Frank A. Mindlin and Mark Bowen from Stony Brook University; Yongrong Zhang, Therwa Hamza and Hanping Feng from the University of Maryland; Tsutomu Matsui from Stanford Synchrotron Radiation Lightsource; and Kay Perry from the Argonne National Laboratory. The study was supported by funding from the National Institute of Health and the U.S. Department of Energy.

 

To read the article in its entirety please click on the following link to be redirected:

https://www.infectioncontroltoday.com/bacterial/study-uncovers-weakness-c-diff-toxin

Research Study Finds Patient Age, Use of Proton Pump Inhibitors and the Administration of Primary Prophylaxis Were Not Significant Predictors of Hospital-Onset C.diff. Infection

Increasing length of stay, exposure to multiple classes of antibiotics, use of opioids and cirrhosis are all independently associated with an increased risk for hospital-onset Clostridioides difficile infection, or CDI, in asymptomatic colonized patients, but age is not, according to findings from a retrospective cohort study.

According to Yves Longtin, MD, chair of infection prevention and control at Jewish General Hospital in Montreal and associate professor of medicine at McGill University, and colleagues, “colonized individuals are at risk of progressing to CDI, but the factors that trigger progression to CDI are poorly understood.”

For their study, Longtin and colleagues assessed 513 patients colonized with C. difficile at the Quebec Heart and Lung Institute between November 2013 and January 2017, 7.6% of whom developed hospital-onset CDI. The 30-day attributable mortality was 15%.

The researchers found that hospital-onset CDI was independently associated with an increased length of stay (adjusted OR per day = 1.03; P = .006), exposure to multiple classes of antibiotics (aOR per class = 1.45; P = .02), use of opioids (aOR = 2.78; P = .007) and cirrhosis (aOR = 5.49; P = .008).

The use of laxatives was associated with a lower risk for CDI (aOR = 0.36; P = .01), according to the findings.

Longtin and colleagues also assessed the impact of specific antibiotics on CDI risk and found that beta-lactam with beta-lactamase inhibitors (OR = 3.65; P < .001), first-generation cephalosporins (OR = 2.38; P = .03) and carbapenems (OR = 2.44; P = .03) demonstrated the greatest risk for hospital-onset CDI.

Patient age, use of proton pump inhibitors and the administration of primary prophylaxis were not significant predictors of hospital-onset CDI, the researchers said.

“The lack of association between age and the risk of CDI among colonized patients is striking considering that age is among the strongest predictors for CDI,” Longtin and colleagues wrote. “This finding suggests that age may be associated with an increased risk of CDI through a greater susceptibility to colonization rather than an increased risk of progression to CDI once colonization has occurred, although studies on this topic have produced conflicting results.”

Although the findings demonstrated several predictive factors associated with hospital-onset CDI among colonized patients, Poirier and colleagues noted that further investigation is needed to determine whether “modifying these variables could decrease the risk of CDI.” – Marley Ghizzone

 

 

 

Disclosures: Longtin reports receiving research funding from Becton Dickinson and Merck, and research funding and personal fees from Gojo. Please see the study for all other authors’ relevant financial disclosures

To read this article in its entirety please click on the following link to be redirected:

https://www.healio.com/infectious-disease/nosocomial-infections/news/online/%7B1f25c2ae-c807-40af-b61c-e251b8c00828%7D/age-not-associated-with-hospital-onset-cdi-in-colonized-patients-study-suggests

Researchers Examined the Effect of Disinfectant on C. difficile Spores and How They Survived Afterwards On Surfaces Including Isolation Gowns, Stainless Steel and Vinyl Flooring

In lab studies, researchers found that C. diff spread easily from disposable gowns often employed in surgery or infection control to stainless steel and vinyl surfaces.

“The [bacteria] also transferred to vinyl flooring, which was quite disturbing. We didn’t realize they would,” said Tina Joshi, a lecturer in molecular microbiology at the University of Plymouth in the United Kingdom and lead author of the new study.

“These bugs evolve. These bugs like to stay one step ahead. And even though we’re using disinfectants and antibiotics appropriately, they still will become resistant in time. It’s inevitable,” Joshi said.

The bacteria, called Clostridioides difficile or C. diff., cause almost a half million infections every year in the United States, according to the Centers for Disease Control and Prevention.

The infection, which is spread by fecal to oral transmission, causes severe diarrhea, and can lead to intestinal inflammation and kidney failure. Those most at risk are people who have been given strong antibiotics, as well as those with long hospital stays, or those living in long-term care facilities like the elderly.

That means that keeping these facilities clean is incredibly important. But new research, published Friday (7/12/19)  in the journal Applied and Environmental Microbiology, shows how difficult that can be.

In lab studies, researchers found that C. diff spread easily from disposable gowns often employed in surgery or infection control to stainless steel and vinyl surfaces.

These bugs evolve. These bugs like to stay one step ahead. And even though we’re using disinfectants and antibiotics appropriately, they still will become resistant in time. It’s inevitable.

What’s more, the bacteria didn’t die when the researchers tried to kill them with concentrated chlorine disinfectant.

“Even if we applied 1,000 parts per million of chlorine, it would allow spores to survive in the gowns,” Joshi told NBC News.

It’s possible that increasing the amount of chlorine might kill the spores, but if the spores are indeed becoming resistant to the disinfectant, it will only be a matter of time before the stronger concentrations can’t kill them.

“These bugs evolve. These bugs like to stay one step ahead. And even though we’re using disinfectants and antibiotics appropriately, they still will become resistant in time. It’s inevitable,” Joshi said.

C. diff infections can occur when a patient is given broad spectrum antibiotics to tackle another infection.

If the bacteria aren’t killed, hospital patients or people in nursing homes can become infected when they come into contact with contaminated surfaces, such as a bedside food tray.

But if traditional disinfectants are ineffective, as the new research suggests, what works?

One option is UV light, which could be useful in killing the bacteria. However, it can be challenging to make sure all surfaces are fully exposed to the light. At this point, Joshi said, highly concentrated bleach appears to be the best option.

For those who care for patients with compromised immune systems at home, the C. Diff Foundation says alcohol-based hand sanitizers are ineffective against the bacteria.

On its website, the group recommends using a cleaning solution of one cup bleach to nine cups of water, and leaving the mixture on surfaces for a minimum of 10 minutes. (Basic & Generic, not EPA registered product).

Meanwhile, if C. diff spores can survive on gowns and other surfaces, it is likely also the case that they can live on doctor’s coats and scrubs worn by hospital personnel all day.  (C Diff Foundation agrees)

“That’s a real infection control hazard, because these spores can stick to fibers. We’ve proven that in this paper,” Joshi said.

Erika Edwards

Erika Edwards is the health and medical news writer/reporter for NBC News and Today.

 

To read the article in its entirety please click on the following link to be redirected:

https://www.nbcnews.com/health/health-news/dangerous-bacteria-can-survive-disinfectant-putting-patients-risk-n1029231

 

 

CspC Plays a Critical Role in Regulating C. diff. Spore Germination in Response to Multiple Environmental Signals.


Abstract

The gastrointestinal pathogen, Clostridioides difficile, initiates infection when its metabolically dormant spore form germinates in the mammalian gut. While most spore-forming bacteria use transmembrane germinant receptors to sense nutrient germinants, C. difficile is thought to use the soluble pseudoprotease, CspC, to detect bile acid germinants. To gain insight into CspC’s unique mechanism of action, we solved its crystal structure. Guided by this structure, we identified CspC mutations that confer either hypo- or hyper-sensitivity to bile acid germinant. Surprisingly, hyper-sensitive CspC variants exhibited bile acid-independent germination as well as increased sensitivity to amino acid and/or calcium co-germinants. Since mutations in specific residues altered CspC’s responsiveness to these different signals, CspC plays a critical role in regulating C. difficile spore germination in response to multiple environmental signals. Taken together, these studies implicate CspC as being intimately involved in the detection of distinct classes of co-germinants in addition to bile acids and thus raises the possibility that CspC functions as a signaling node rather than a ligand-binding receptor

Author summary

The major nosocomial pathogen Clostridioides difficile depends on spore germination to initiate infection. Interestingly, C. difficile’s germinant sensing mechanism differs markedly from other spore-forming bacteria, since it uses bile acids to induce germination and lacks the transmembrane germinant receptors conserved in almost all spore-forming organisms. Instead, C. difficile is thought to use CspC, a soluble pseudoprotease, to sense these unique bile acid germinants. To gain insight into how a pseudoprotease senses germinant and propagates this signal, we solved the crystal structure of C. difficile CspC. Guided by this structure, we identified mutations that alter the sensitivity of C. difficile spores to not only bile acid germinant but also to amino acid and calcium co-germinants. Taken together, our study implicates CspC in either directly or indirectly sensing these diverse small molecules and thus raises new questions regarding how C. difficile spores physically detect bile acid germinants and co-germinants.

Authors:

  • Amy E. Rohlfing ,
  • Brian E. Eckenroth ,
  • Emily R. Forster,
  • Yuzo Kevorkian,
  • M. Lauren Donnelly,
  • Hector Benito de la Puebla,
  • Sylvie Doublié,
  • Aimee Shen

To view the Abstract in its entirety – please click on the link provided below:

https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008224

  • Published: July 5, 2019

On June 13th the U.S. Food and Drug Administration Warned of Infections From Fecal Microbiota Transplantation (FMT) Linked to a Patient’s Death

Dr. Peter Marks, director the Center for Biologics Evaluation and Research at the U.S. Food and Drug Administration stated, “While we support this area of scientific discovery, it’s important to note that fecal microbiota for transplantation does not come without risk,”

Two patients contracted severe infections, and one of them died, from fecal transplants that contained drug-resistant bacteria.

The agency said two patients received donated stool that had not been screened for drug-resistant germs, leading it to halt clinical trials until researchers prove proper testing procedures are in place.

After reports of serious, antibiotic-resistant infections linked to the procedures, the FDA wants “to alert all health care professionals who administer FMT [fecal microbiota transplant] about this potential serious risk so they can inform their patients.” said Dr. Peter Marks, director the Center for Biologics Evaluation and Research at the U.S. Food and Drug Administration.

Other samples from the same donor were tested after the patients got sick. The samples were found to harbor the same dangerous germs found in the patients, known as multi-drug-resistant organisms (MDRO). They were E. coli bacteria that produced an enzyme called extended-spectrum beta-lactamase, which makes them resistant to multiple antibiotics. The stool had not been tested for the germs before being given to the patients.

The F.D.A. on Thursday issued a warning to researchers that stool from donors in studies of fecal transplantation should be screened for drug-resistant microbes, and not used if those were present. It is also warning patients that the procedure can be risky, is not approved by the agency and should be used only as a last resort when C. difficile does not respond to standard treatments.

Dr. Marks said the agency was trying to strike a balance between giving patients who need the treatment access to it while also establishing safeguards to protect them from infection. In a statement, he said, “While we support this area of scientific discovery, it’s important to note that fecal microbiota for transplantation does not come without risk.”

Researchers are also looking into the use of fecal transplants to treat chronic gastrointestinal illnesses such as ulcerative colitis or irritable bowel syndrome.

The patients received treatment as part of a clinical trial, and the researchers conducting the trial reported the cases as adverse events to the F.D.A., which they are required to do. But the rules governing this kind of experiment prohibit the F.D.A. from revealing details about the treatment or who provided it.

 

SOURCE:  https://www.nytimes.com/2019/06/13/health/fecal-transplant-fda.html

FDA Safety Alert Regarding Use of Fecal Microbiota for Transplantation and Risk of Serious Adverse Reactions d/t Multi-drug Resistant Organisms

Important Safety Alert Regarding Use of Fecal Microbiota for Transplantation and Risk of Serious Adverse Reactions Due to Transmission of Multi-Drug Resistant Organisms

The Food and Drug Administration (FDA) is informing health care providers and patients of the potential risk of serious or life-threatening infections with the use of fecal microbiota for transplantation (FMT).  The agency is now aware of bacterial infections caused by multi-drug resistant organisms (MDROs) that have occurred due to transmission of a MDRO from use of investigational FMT.

Summary of the Issue

  • Two immunocompromised adults who received investigational FMT developed invasive infections caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E.coli). One of the individuals died.
  • FMT used in these two individuals were prepared from stool obtained from the same donor.
  • The donor stool and resulting FMT used in these two individuals were not tested for ESBL-producing gram-negative organisms prior to use. After these adverse events occurred, stored preparations of FMT from this stool donor were tested and found to be positive for ESBL-producing E. coli identical to the organisms isolated from the two patients.

Information for Health Care Providers and Patients

In July 2013, FDA issued guidance stating that it intends to exercise enforcement discretion under limited conditions regarding the IND requirements for the use of FMT to treat Clostridium difficile (C. difficile) infection in patients who have not responded to standard therapies. The guidance states that FDA intends to exercise enforcement discretion provided that the treating physician obtains adequate consent for the use of FMT from the patient or his or her legally authorized representative. The consent should include, at a minimum, a statement that the use of FMT to treat C. difficile is investigational and a discussion of its potential risks. FDA is informing members of the medical and scientific communities and other interested persons of the potential risk of transmission of MDROs by FMT and the resultant serious adverse reactions that may occur.

Patients considering FMT to treat C. difficile infection should speak to their health care provider to understand the potential risks associated with the product’s use.

Additional Protections for Investigational Use of FMT

  • Because of these serious adverse reactions that occurred with investigational FMT, FDA has determined that the following protections are needed for any investigational use of FMT:
    • Donor screening with questions that specifically address risk factors for colonization with MDROs, and exclusion of individuals at higher risk of colonization with MDROs.
    • MDRO testing of donor stool and exclusion of stool that tests positive for MDRO. FDA scientists have determined the specific MDRO testing and frequency that should be implemented.

Reporting Adverse Event

FDA encourages all health care providers administering FMT products to report suspected adverse events to the FDA at 1-800-FDA-1088 or http://www.fda.gov/medwatch.

June 13, 2019