Category Archives: ESCMID Updates

Researchers Suggest a Portion Of C. diff. Cases In Europe Involve Infections Associated With Other Sources Outside of Healthcare-Associated Infections

As part of a multicenter study, investigators from the University of Oxford, the University of Leeds, Astellas Pharma Europe, and elsewhere used a combination of ribotyping, sequencing, phylogenetics, and geographic analyses to retrace the genetic diversity and potential sources of C. difficile isolates involved in infections in European hospitals.

Recent research suggests a proportion of Clostridium difficile cases in Europe involve not only hospital-acquired infections but also infections associated with other sources, such as food.

As stated in the article:

https://www.genomeweb.com/sequencing/clostridium-difficile-genetic-patterns-europe-point-possible-infection-sources-beyond?utm_source=Sailthru&utm_medium=email&utm_campaign=GWDN%20Mon%20PM%202017-04-24&utm_term=GW%20Daily%20News%20Bulletin

David Eyre, a clinical lecturer at the University of Oxford, was slated to present the work at the European Congress of Clinical Microbiology and Infectious Diseases annual 2017 meeting in Vienna this past weekend. The study was funded by Astellas Pharma’s Europe, Middle East, and Africa (EMEA) program.

“We don’t know much about how C. difficile might be spread in the food chain, but this research suggests it may be very widespread,” Eyre said in a statement. “If that turns out to be the case, then we need to focus on some new preventative strategies such as vaccination in humans once this is possible, or we might need to look at our use of animal fertilizers on crops.”

“This study doesn’t give us any definitive answers,” he explained, “but it does suggest other factors [than hospital infections] are at play in the spread of C. difficile and more research is urgently needed to pin them down.”

####

Some of the strains clustered by locale, consistent with spread from one individual to the next, for example in a healthcare setting. But more unexpectedly, the team also saw strains smattered across seemingly unconnected sites. And because at least one of those strains had previously been linked to pig farming, the researchers speculated that some infections may have been transmitted through food sources.

 

To read the article in its entirety click on the following link:

https://www.genomeweb.com/sequencing/clostridium-difficile-genetic-patterns-europe-point-possible-infection-sources-beyond?utm_source=Sailthru&utm_medium=email&utm_campaign=GWDN%20Mon%20PM%202017-04-24&utm_term=GW%20Daily%20News%20Bulletin

European Society of Clinical Microbiology and Infectious Disease: Update Of the Diagnostic Guidance Document for Clostridium difficile Infection (CDI)

Abstract

In 2009 the first European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guideline for diagnosing Clostridium difficile infection (CDI) was launched. Since then newer tests for diagnosing CDI have become available, especially nucleic acid amplification tests. The main objectives of this update of the guidance document are to summarize the currently available evidence concerning laboratory diagnosis of CDI and to formulate and revise recommendations to optimize CDI testing. This update is essential to improve the diagnosis of CDI and to improve uniformity in CDI diagnosis for surveillance purposes among Europe. An electronic search for literature concerning the laboratory diagnosis of CDI was performed. Studies evaluating a commercial laboratory test compared to a reference test were also included in a meta-analysis. The commercial tests that were evaluated included enzyme immunoassays (EIAs) detecting glutamate dehydrogenase, EIAs detecting toxins A and B and nucleic acid amplification tests. Recommendations were formulated by an executive committee, and the strength of recommendations and quality of evidence were graded using the Grades of Recommendation Assessment, Development and Evaluation (GRADE) system. No single commercial test can be used as a stand-alone test for diagnosing CDI as a result of inadequate positive predictive values at low CDI prevalence. Therefore, the use of a two-step algorithm is recommended. Samples without free toxin detected by toxins A and B EIA but with positive glutamate dehydrogenase EIA, nucleic acid amplification test or toxigenic culture results need clinical evaluation to discern CDI from asymptomatic carriage.

 

TO READ ARTICLE IN ITS ENTIRETY PLEASE CLICK ON THE FOLLOWING LINK:

http://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(16)30025-8/fulltext#sec2.2