Tag Archives: C. diff. infection

C Diff Foundation with Leading Gastroenterologist’s Oneto and Feuerstadt Announce November Clinic Dedicated for C.difficile

C Diff Foundation ( https://cdifffoundation.org/)  is a one hundred percent volunteer, world-renowned 501(c)(3) not-for-profit organization and has announced that the Foundation will offer a November clinic sponsored by the C Diff Foundation and dedicated to patients diagnosed and recovering from a C. difficile infection (CDI).

The November 19th C Diff Foundation Clinic will be hosted by Concorde Gastroenterology at their  233 Broadway Suite 840,  New York, NY 10279 office.
The clinic will hold office hours from 10:00 a.m. until  4:00 p.m. ET
With Doctor’s Caterina Oneto, MD and  Paul Feuerstadt, MD

Please call +1 212 889 5544 Ext 199
To schedule an appointment.

The August clinic received an overwhelming response from patients in various stages of recovery, including 15 individuals already scheduled with multiple spots planned for patients with recently diagnosed infection or those who have had multiple episodes and need further guidance and management.

Dr. Oneto said, “Through this clinic, we will provide access to high-level care to a number of new consults, as well as existing patients, who are recovering from the infection. It is my pleasure to partner with the C Diff Foundation and lend my expertise to the management and hopefully, eradication of this debilitating disease.”

“We are delighted with the immediate and overwhelming response from the patient community. It is a testament to the needs of those suffering from this infection. With this clinic, we hope to bring awareness, education and more importantly, cutting edge treatment to the general public,” stated Dr. Feuerstadt.

There are plans for additional clinic dates in 2020  in Florida, New York, Connecticut, Illinois, and Minnesota.

“The clinics demonstrate Doctor Oneto and Feuerstadt’s commitment over the years raising
C. diff. awareness while providing management of those suffering with
a C. diff. infection. Patients who might not otherwise be able to gain access to providers sub-specializing and caring for those with this infection will have this opportunity available.  Doctor’s Oneto and Feuerstadt’s dedication resonates within the C. diff. community and we are grateful for their participation and support.” stated Nancy Caralla, Founding President and Executive Director of the C Diff Foundation.

About C Diff Foundation

C Diff Foundation’s mission is dedicated to reaching out to communities from villages to cities, to medical practitioners, medical students, C. diff. survivors, caregivers, and the patients combating a C. difficile infection (CDI) while providing the general public important information on prevention, treatments available, clinical trials in progress, nutrition, diagnostics, and EPA registered products available for environmental safety worldwide.

About Caterina Oneto, MD

Dr. Caterina Oneto, MD is a Gastroenterologist in private practice in New York and is affiliated with NYU Langone. She completed her Fellowship in Gastroenterology at Montefiore Medical Center, Albert Einstein College of Medicine. Dr. Oneto is the Co-Director of Clinical trials at Concorde Medical Group. Her main focus is Irritable Bowel Disease (IBD),

About Paul Feuerstadt, MD

His areas of interest Clostridioides difficile infection (CDI) and ischemic diseases of the gut and in these areas he has presented his research extensively, authored and co-authored many manuscripts, textbook chapters, and online modules. Another passion of Dr. Feuerstadt is teaching, frequently giving lectures locally, regionally and nationally. He holds a clinical appointment as an Assistant Clinical Professor of Medicine at the Yale University School of Medicine and is a full-time attending physician at the Gastroenterology Center of Connecticut seeing patients with a broad spectrum of clinical gastroenterological diseases.

Dr. Feuerstadt attended the Weill Medical College of Cornell University in Manhattan for medical school and completed his residency in internal medicine at New York-Presbyterian Hospital/Weill Cornell. His clinical fellowship training was completed at Montefiore Medical Center in the Bronx, New York.

Clostridioides difficile infections (AKA C. diff., C.difficile, CDI) and Microbiome modification.
Dr Oneto is also Co-Director of the C.diff. Community Global Support program offered by the
C Diff Foundation.  Dr. Oneto appears regularly on Doctor Radio on Sirius Xm
and C. diff. Spores and More Radio (cdiffradio.com).

About C.difficile

It is the most common Healthcare-associated infection affecting an estimated 450,000 people annually in the United States alone with ~28,000 deaths from complications of this infection. This infection accounts for ~16% of all healthcare-associated infections.

In the USA: Nearly half a million Americans suffer from Clostridioides difficile (C. diff.) infections in a single year according to a study released on February 25, 2015, by the Centers for Disease Control and Prevention (CDC).

**Approximately 29,000 patients died within 30 days of the initial diagnosis of C. difficile. Of those, about 15,000 deaths were estimated to be directly attributable to C. difficile infections (CDI), making C. difficile a very important cause of infectious disease death in the United States alone. More than 80 percent of the deaths associated with C. difficile occurred among Americans aged 65 years or older. C. difficile causes an inflammation of the colon and deadly diarrhea.

Ribotypes and Prevalence of Clostridium difficile (C. diff) Hypervirulent Strain: NAP1/B1/027

The Hypervirulent Strain of Clostridium Difficile: NAP1/B1/027

– A Brief Overview



Abstract

Clostridium difficile is a gram-positive bacterium notorious for causing epidemic diarrhea globally with a significant health burden. The pathogen is clinically challenging with increasing antibiotic resistance and recurrence rate. We provide here an in-depth review of one particular strain/ribotype 027, commonly known as NAP1/B1/027 or North American pulsed-field gel electrophoresis type 1, restriction endonuclease analysis type B1, polymerase chain reaction ribotype 027, which has shown a much higher recurrence rate than other strains.

Introduction & Background

Clostridium difficile (C. diff) is a gram-positive, anaerobic, motile, spore-forming, rod-shaped bacteria [1-2]. It has been isolated from almost all mammals, including pigs, cows, horses, elephants, and Kodiak bears, as well as in poultry and ostriches. It has also been found in the soil and feces of humans and animals. It is transmitted from person to person by the fecal-oral route. The C. diff isolates found in animals are similar to the ones found in humans, but according to Hensgens et al., this similarity does not mean that interspecies transmission occurs. However, immunocompromised people are still at risk for interspecies transmission [1]. Its pathogenicity is dependent on the two toxins that it produces: enterotoxin A (Toxin A or TcdA) and cytotoxin B (Toxin B or TcdB). Enterotoxin damages the actin in target cells which leads to neutrophil infiltration, inflammation, and necrosis of epithelial cells. Cytotoxin B has been shown to damage tight junctions of epithelial cells, which increases vascular permeability and causes hemorrhage [2-3]. These toxins form the basis of stool analysis when diagnosing people with the suspected infection. Despite all the virulence characters described, C. diff is a poor competitor against other gut flora in the human colon. In a healthy colon, this pathogen is not in sufficient quantity to produce a clinically significant disease. Risk factors that disrupt this balance include antibiotics exposure, health care environment, acid suppressants, and elemental diet. The bacterium can cause severe watery diarrhea that can progress to pseudomembranous colitis [3-8]. It has been named as one of the three microorganisms with an ‘urgent’ threat level by the Centers for Disease Control and Prevention (CDC) based on its public health impact in the United States (US) with an estimated $1.5 billion US in annual health care expenditures [8]. Patients who have more than three episodes of unexplained and new onset unformed stools in 24 hours should be referred for testing for a Clostridium difficile infection (CDI). Also, patients with risk factors described previously should undergo testing for this pathogen [9]. The ribotype 027 strain of C. diff is particularly noteworthy as contradicting evidence in the literature is present regarding the disease severity it causes. We provide here a brief overview of the epidemiology, pathophysiology, and treatment of this particular strain.

Review

Ribotypes and prevalence of Clostridium difficile (C. diff)

Clostridium difficile can be characterized according to its ribotyping which is performed using the polymerase chain reaction. Several different ribotypes have been associated with CDI. The ribotypes 001, 002, 014, 046, 078, 126, and 140 have been found to be prevalent in the Middle East [10-12]. In Asia, ribotypes 001, 002, 014, 017, and 018 are more prevalent [13-15]. The predominant strains in Europe and North America include ribotypes 001, 014, 020, 027, and 078 [6]. The ribotype 027 (also referred to as NAP1/B1/027) has emerged in the last decade. Studies have underlined antimicrobial resistance as one of the causes of its epidemic outbreaks. Capillary electrophoresis (CE) ribotyping is used as the standard for characterization of C. diff isolates. This method relies on the intergeneric region variability between 16S and 23S ribosomal deoxyribonucleic acid (DNA) [16]. Ribotype 027 was found to have reduced susceptibility to metronidazole, rifampicin, moxifloxacin, clindamycin, imipenem, and chloramphenicol [17-18]. It is clinically and financially concerning as it leads to severe disease presentation, as well as antimicrobial resistance with high morbidity and mortality rates as compared to other strains [19]. Strains, such as ribotype 027 (especially its spores), spread more easily within the hospital because they can resist the hospital environment, cleaning, and disinfectants [1]. An observational study conducted on patients admitted with diarrhea in a Veteran Affairs Medical Center showed that around 22% of the patients were positive for the NAP1/B1/027 strain out of all the people who tested positive for CDI. Further, a reduction in the rate of diarrhea caused by the NAP1/B1/027 strain was observed with a prevalence of 16.9% in 2016, down from 26.2% in 2013. An increase in the level of awareness and education was thought to be the reason for this decline [20]. The prevalence of this strain in North America is reportedly around 22% – 36%. Ribotype 027 was identified as the most prevalent strain causing CDI with recent outbreaks in North America [20-22]. The prevalence of this strain was shown to be 48% in hospitals in Poland with an outbreak of CDI during September 2011 to August 2013 [21].

NAP1/B1/027 strain

Toxigenicity and Pathogenesis

The North American pulsed-field gel electrophoresis type 1, restriction endonuclease analysis type B1, polymerase chain reaction ribotype 027 (NAP1/B1/027) strain has been shown to contain a gene locus, CdtLoc, that encodes for CD196 ADP-ribosyltransferase (CDT) or binary toxin. The bacterium also produces Toxin A and Toxin B, similar to non-027 ribotypes, through the PaLoc gene locus [23-24]. CDT was first isolated by Popoff et al. [25]. The toxin comprises two separate toxin components: CDTa and CDTb. CDTa, which is an ADP-ribosyltransferase enzyme, modifies actin which results in depolymerization and destruction of the actin cytoskeleton in the gut. CDTb binds to gut cells and increases uptake of CDTa. The destruction caused by CDT favors adherence of bacteria and increased uptake of Toxin A and Toxin B [26].

In addition to the toxins, this strain (along with few others) carries a base pair frameshift deletion at nucleotide 117 of the TcdC gene, which is a negative regulator of Toxins A and B. A mutation in this gene thus causes hyperexpression of toxins by this particular strain. Warny et al. showed that NAP1/B1/027 produces Toxin A approximately 16 times and Toxin B approximately 23 times more than the control strains [27]. One study also proposed that increased sporulation by this strain may also be associated with the increased spread of CDI [28]. The virulent factors associated with NAP1/B1/027 strain have been summarized in Table 1.

Virulent factor Mechanism
1. Toxin A (Enterotoxin A or TcdA) Damages the actin in target cells which leads to neutrophil infiltration, inflammation, and necrosis of epithelial cells [24].
2. Toxin B (Cytotoxin B or TcdB) Damages tight junctions of epithelial cells, which increases vascular permeability and causes hemorrhage [24].
3. CDTa toxin Modification of actin with ADP-ribosylation that results in actin depolymerization and destruction of the cytoskeleton that assists in adherence of bacteria to gut epithelial cells [25-26].
4. CDTb toxin Facilitates uptake of CDTa toxin into the gut epithelial lining [25-26].
5. Hypersporulation Increases reproduction and spread of bacteria [28].
6. TcdC gene mutation (18-bp deletion) Increases the production of Toxin A and Toxin B by down-regulation of feedback inhibitor involved in suppressing toxin production [27].

Previous studies have shown contradicting evidence regarding the severity of disease caused by this particular strain. A recent retrospective analysis by Bauer et al. concluded that NAP1/B1/027 was associated with a decreased odds of severe disease (odds ratio (OR): 0.35, 95% confidence interval (CI) 0.13 – 0.93) and did not increase in-hospital mortality (OR: 1.02, 95% CI 0.53 – 1.96) or recurrence rate (OR: 1.16, 95% CI 0.36 – 3.77) [23]. Several other studies conducted (including cross-sectional, case-control, and cohort studies) did not show any worse outcomes compared to other strains [29-31]. Sirad et al. demonstrated that although NAP1/B1/027 strain may produce more toxins compared to other strains, they produced fewer spores and were not always associated with severe disease [32]. On the contrary, Rao et al. conducted a cohort study and concluded that ribotype 027 was associated with severe CDI (OR: 1.73, 95% CI 1.03 – 2.89; p = 0.037) and increased mortality (OR: 2.02, 95% CI 1.19 – 3.43; p = 0.009) compared to other ribotypes [24]. Another study showed similar results with the North American pulsed-field gel electrophoresis type 1 (NAP1) strain. Multivariate regression analysis exhibited an increase in the severity of CDI with the NAP1 strain (OR: 1.66, 95% CI: 1.90 – 2.54) and increased mortality (OR: 2.12, 95% CI: 1.22 – 3.68) [33]. One study from Quebec labeled this strain to be responsible for severe diseases twice as frequently as compared to other strains [34].

The basis for these contradictory findings can be explained by several reasons, including study design, study population, sample size, the method of detection for C. diff, study setting, and unmeasured confounders. Given these contradictory results, healthcare providers should focus on treating this infection based on their clinical judgment and markers of severe infection, including the number of diarrheal episodes, signs of dehydration, creatinine level, albumin level, white blood cell count, associated co-morbidities, immunocompromised state, etc.

Prevention

Preventive strategies employed for NAP1/B1/027 strain are similar to strategies taken for other strains. These include barrier methods (gloves and gown while examining patient), use of disposable equipment, handwashing with soap and water, disinfecting the environment, and antimicrobial stewardship [35]. Further vaccines are being developed targeting the toxins, including TcdA and TcdB, for simultaneous prevention and treatment of CDI. Actoxumab and bezlotoxumab, which are monoclonal antibodies against TcdA and TcdB, are being investigated for this purpose. A combined Phase III trial (MODIFY I (NCT01241552) and MODIFY II (NCT01513239)) showed benefit from bezlotoxumab, but the combination of actoxumab and bezlotoxumab did not yield any further benefit [36]. Bezlotoxumab has received Food and Drug Administration (FDA) approval in October 2016 and is to be used in patients more than 18 years of age, who are at high risk of recurrence from CDI, and are receiving antibiotics [37]. A novel tetravalent vaccine against TcdA, TcdB, CDTa, and CDTb has been proposed by Secore et al. using a hamster model which has shown promising results [38].

A novel drug, SYN-004 (ribaxamase), is under investigation that has shown promising results for preventing CDI. This drug, which is a β-lactamase, is excreted into the gut and degrades the excess antibiotic that prevents disruption of normal gut flora, ultimately preventing CDI [39]. The Phase IIa clinical trial of this drug showed that ribaxamase at a dose of 150 mg every six hours results in an undetectable concentration of ceftriaxone in the intestine which can potentially decrease the likelihood of a C. diff infection, given the less probability of disruption of the gut bacteria.

Resistance to Antibiotics and Treatment

Cases of NAP1/B1/027 reported in Panama were found to be highly resistant to clindamycin, moxifloxacin, levofloxacin, ciprofloxacin, and rifampin but were susceptible to metronidazole and vancomycin [40]. Susceptibility of ribotype 027 and non-027 ribotypes to different antibiotics was tested in a study in Canada. Ribotype 027 showed a resistance of 92.2% to moxifloxacin compared to 11.2% for other strains. Similarly, 78.2% of ribotype 027 strains were resistant to ceftriaxone compared to 15.7% of other strains. Ribotype 027 demonstrated a greater than four-fold higher minimum inhibitory concentration (MIC) to metronidazole (4 vs. 1 μg/ml) and two-fold higher MIC for fidaxomicin (1 vs. 2 μg/ml). For clindamycin and vancomycin, the resistance was similar in both groups [41].

Resistance to erythromycin is linked to mutations in the ribosomal methylase genes, whereas resistance to fluoroquinolones is due to a mutation in DNA gyrase. Resistance to rifamycin and fidaxomicin is attributed to ribonucleic acid (RNA) polymerase methylation. The presence of phenicol and lincosamide genes has been shown to cause resistance to linezolid. A study conducted in hospitals of Mexico showed some isolates of ribotype 027 to have reduced susceptibility to fidaxomicin despite the unavailability of this drug in Mexico and the patients being unexposed to it [42]. Antibiotics form the basis of treatment for the NAP1/B1/027 strain. Currently, no specific Infectious Diseases Society of America (IDSA) guidelines are available to guide treatment for this particular strain, and hence, the treatment is similar to a non-NAP1/B1/027 strain [9]. Based on the current guidelines for treating CDI overall, we propose the following table for treating infection caused by the NAP1/B1/027 strain (Table 2).

First line treatment Alternative treatment
Initial non-severe infection Oral vancomycin, 125 mg four times daily for 10 days Fidaxomicin, 200 mg twice daily for 10 days; If neither is available, then use metronidazole, 500 mg three times daily for 10 days
First non-severe recurrence Repeat oral vancomycin, 125 mg four times daily for 10 days Fidaxomicin, 200 mg twice daily for 10 days
Second non-severe recurrence Oral vancomycin taper as follow: 125 mg four times daily for seven to 14 days, 125 mg twice daily for seven days, 125 mg twice once daily for seven days, 125 mg once every other day for seven days, 125 mg once every three days for 14 days Fidaxomicin, 200 mg orally twice daily for 10 days, or a fecal microbiota transplant
Subsequent non-severe recurrence Fecal microbiota transplant Tapering oral vancomycin with probiotics, IVIG, fidaxomicin
Severe disease Oral vancomycin, 125 mg four times daily, increase to 500 mg four times daily if no improvement noted in 24-48 hours or associated complications, including renal failure, ileus, etc. Fidaxomicin if the patient cannot tolerate oral vancomycin for any reason
Ileus Add IV metronidazole, 500 mg every eight hours, to oral vancomycin or fidaxomicin therapy; consider general surgery consult as needed Intracolonic vancomycin, IVIG

This strain has not shown any resistance to fidaxomicin, but there has been some contradicting evidence to this. A case report was published in 2017 in which the NAP1 C. diff infection, resistant to treatment with fidaxomicin and fecal transplants, was effectively treated with intravenous immunoglobulin (IVIG) [43]. Given the emerging threat of antibiotic resistance, increasing awareness, controlling infections, and antimicrobial stewardship can be effective measures to reduce this threat [17].

Currently, several novel antibiotics are under investigation which have gone through various randomized controlled trials for CDI treatment. Ridinilazole and cadazolid have completed Phase II trials, while surotomycin has completed two Phase III trials which have shown promising results [44-47].

Conclusions

The data regarding the NAP1/B1/027 strain is inconclusive with ongoing debates whether this particular strain is associated with severe disease. Further research, including meta-analyses, are needed to solve this enigma. Clinicians should guide treatment based on their judgment and objective evidence of disease severity.


References

  1. Hensgens MP, Keessen EC, Squire MM, et al.: Clostridium difficile infection in the community: a zoonotic disease?. Clin Microbiol Infect. 2012, 18:635-45. 10.1111/j.1469-0691.2012.03853.x
  2. Aziz M, Fatima R, Douglass L, Abughanimeh O, Raza S: Current updates in management of Clostridium difficile infection in cancer patients. Curr Med Res Opin. 2018, Epub ahead of print:1-6. 10.1080/03007995.2018.1487389
  3. Sachsenheimer FE, Yang I, Zimmermann O, et al.: Genomic and phenotypic diversity of Clostridium difficile during long-term sequential recurrences of infection. Int J Med Microbiol. 2018, 308:364-77. 10.1016/j.ijmm.2018.02.002
  4. Luciano JA, Zuckerbraun BS: Clostridium difficile infection: prevention, treatment, and surgical management. Surg Clin North Am. 2014, 94:1335-49. 10.1016/j.suc.2014.08.006
  5. Clabots CR, Johnson S, Olson MM, Peterson LR, Gerding DN: Acquisition of Clostridium difficile by hospitalized patients: evidence for colonized new admissions as a source of infection. J Infect Dis. 1992, 166:561-67. 10.1093/infdis/166.3.561
  6. Howell M, Novack V, Grgurich P, Soulliard D, Novack L, Pencina M, Talmor D: Iatrogenic gastric acid suppression and the risk of nosocomial Clostridium difficile infection. Arch Intern Med. 2010, 170:784-90. 10.1001/archinternmed.2010.89
  7. O’Keefe S: Tube feeding, the microbiota, and Clostridium difficile infection. World J Gastroenterol. 2010, 16:139-42. 10.3748/wjg.v16.i2.139
  8. Hampton T: Report reveals scope of US antibiotic resistance threat. JAMA. 2013, 310:1661-63. 10.1001/jama.2013.280695
  9. McDonald LC, Gerding DN, Johnson S, et al.: Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018, 66:e1-e48. 10.1093/cid/cix1085
  10. Jamal W, Rotimi VO, Brazier J, Duerden BI: Analysis of prevalence, risk factors and molecular epidemiology of Clostridium difficile infection in Kuwait over a 3-year period. Anaerobe. 2010, 16:560-65. 10.1016/j.anaerobe.2010.09.003
  11. Jalali M, Khorvash F, Warriner K, Weese J: Clostridium difficile infection in an Iranian hospital. BMC Res Notes. 2012, 5:159. 10.1186/1756-0500-5-159
  12. Al-Thani AA, Hamdi WS, Al-Ansari NA, Doiphode SH, Wilson GJ: Polymerase chain reaction ribotyping of Clostridium difficile isolates in Qatar: a hospital-based study. BMC Infect Dis. 2014, 14:502. 10.1186/1471-2334-14-502
  13. Sawabe E, Kato H, Osawa K, Chida T, Tojo N, Arakawa Y, Okamura N: Molecular analysis of Clostridium difficile at a university teaching hospital in Japan: a shift in the predominant type over a five-year period. Eur J Clin Microbiol Infect Dis. 2007, 26:695-703. 10.1007/s10096-007-0355-8
  14. Cheng V, Yam W, Lam O, et al.: Clostridium difficile isolates with increased sporulation: emergence of PCR ribotype 002 in Hong Kong. Eur J Clin Microbiol Infect Dis. 2011, 30:1371-81. 10.1007/s10096-011-1231-0
  15. Kim H, Lee Y, Moon H, Lim C, Lee K, Chong Y: Emergence of Clostridium difficile ribotype 027 in Korea. Korean J Lab Med. 2011, 31:191-96. 10.3343/kjlm.2011.31.3.191
  16. Krutova M, Nyc O, Matejkova J, Kuijper E, Jalava J, Mentula S: The recognition and characterisation of Finnish Clostridium difficile isolates resembling PCR-ribotype 027. J Microbiol Immunol Infect. 2018, 51:344-51. 10.1016/j.jmii.2017.02.002
  17. Freeman J, Vernon J, Pilling S, et al.: The ClosER study: results from a three-year pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes, 2011-2014. Clin Microbiol Infect. 2018, 24:724-31. 10.1016/j.cmi.2017.10.008
  18. Goldstein EJ, Citron DM, Sears P, Babakhani F, Sambol SP, Gerding DN: Comparative susceptibilities of fidaxomicin (OPT-80) of isolates collected at baseline, recurrence, and failure from patients in two fidaxomicin phase III trials of fidaxomicin against Clostridium difficile infection. Antimicrob Agents Chemother. 2011, 55:5194-99. 10.1128/AAC.00625-11
  19. Camacho-Ortiz A, López-Barrera D, Hernández-García R, et al.: Correction: First report of Clostridium difficile NAP1/027 in a Mexican hospital. PLoS One. 2015, 10:e0129079. 10.1371/journal.pone.0129079
  20. Giancola S, Williams R, Gentry C: Prevalence of the Clostridium difficile BI/NAP1/027 strain across the United States Veterans Health Administration. Clin Microbiol Infect. 2018, 24:877-81. 10.1016/j.cmi.2017.11.011
  21. Pituch H, Obuch-Woszczatyński P, Lachowicz D, et al.: Prevalence of Clostridium difficile infection in hospitalized patients with diarrhoea: results of a Polish multicenter, prospective, biannual point-prevalence study. Adv Med Sci. 2018, 63:290-95. 10.1016/j.advms.2018.03.003
  22. DePestel DD, Aronoff DM: Epidemiology of Clostridium difficile infection. J Pharm Pract. 2013, 26:464-75. 10.1177/0897190013499521
  23. Bauer KA, Johnston JEW, Wenzler E, et al.: Impact of the NAP-1 strain on disease severity, mortality, and recurrence of healthcare-associated Clostridium difficile infection. Anaerobe. 2017, 48:1-6. 10.1016/j.anaerobe.2017.06.009
  24. Rao K, Micic D, Natarajan M, et al.: Clostridium difficile ribotype 027: relationship to age, detectability of toxins A or B in stool with rapid testing, severe infection, and mortality. Clin Infect Dis. 2015, 61:233-41. 10.1093/cid/civ254
  25. Popoff MR, Rubin EJ, Gill DM, Boquet P: Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun. 1988, 56:2299-306.
  26. Gerding DN, Johnson S, Rupnik M, Aktories K: Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes. 2014, 5:15-27. 10.4161/gmic.26854
  27. Warny M, Pepin J, Fang A, et al.: Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet. 2005, 366:P1079-84. 10.1016/s0140-6736(05)67420-x
  28. Akerlund T, Persson I, Unemo M, Norén T, Svenungsson B, Wullt M, Burman LG: Increased sporulation rate of epidemic Clostridium difficile Type 027/NAP1. J Clin Microbiol. 2008, 46:1530-33. 10.1128/jcm.01964-07
  29. Cloud J, Noddin L, Pressman A, Hu M, Kelly C: Clostridium difficile strain NAP-1 is not associated with severe disease in a nonepidemic setting. Clin Gastroenterol Hepatol. 2009, 7:868-873.e2. 10.1016/j.cgh.2009.05.018
  30. Morgan OW, Rodrigues B, Elston T, Verlander NQ, Brown DF, Brazier J, Reacher M: Clinical severity of Clostridium difficile PCR ribotype 027: a case-case study. PLoS One. 2008, 3:e1812-10. 10.1371/journal.pone.0001812
  31. Walk ST, Micic D, Jain R, et al.: Clostridium difficile ribotype does not predict severe infection. Clin Infect Dis. 2012, 55:1661-68. 10.1093/cid/cis786
  32. Sirard S, Valiquette L, Fortier LC: Lack of association between clinical outcome of Clostridium difficile infections, strain type, and virulence-associated phenotypes. J Clin Microbiol. 2011, 49:4040-46. 10.1128/jcm.05053-11
  33. See I, Mu Y, Cohen J, et al.: NAP1 strain type predicts outcomes from Clostridium difficile infection. Clin Infect Dis. 2014, 58:1394-400. 10.1093/cid/ciu125
  34. Hubert B, Loo VG, Bourgault AM, et al.: A portrait of the geographic dissemination of the Clostridium difficile North American pulsed-field type 1 strain and the epidemiology of C. difficile-associated disease in Québec. Clin Infect Dis. 2007, 44:238-44. 10.1086/510391
  35. Hsu J, Abad C, Dinh M, Safdar N: Prevention of endemic healthcare-associated Clostridium difficile infection: reviewing the evidence. Am J Gastroenterol. 2010, 105:2327-39. 10.1038/ajg.2010.254
  36. Wilcox MH, Gerding DN, Poxton IR, et al.: Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N Engl J Med. 2017, 376:305-17. 10.1056/nejmoa1602615
  37. FDA Approval of Bezlotoxumab in Prevention of Recurrent Clostridium difficile Infection. (2017). Accessed: January 12, 2019: http://www.jwatch.org/na43666/2017/04/24/fda-approval-bezlotoxumab-prevention-recurrent-clostridium.
  38. Secore S, Wang S, Doughtry J, et al.: Development of a novel vaccine containing binary toxin for the prevention of Clostridium difficile disease with enhanced efficacy against NAP1 strains. PLoS One. 2017, 12:e0170640. 10.1371/journal.pone.0170640
  39. Kokai-Kun JF, Roberts T, Coughlin O, et al.: The oral β-lactamase SYN-004 (ribaxamase) degrades ceftriaxone excreted into the intestine in phase 2a clinical studies. Antimicrob Agents Chemother. 2017, 61:pii: e02197-16. 10.1128/AAC.02197-16
  40. López-Ureña D, Quesada-Gómez C, Miranda E, Fonseca M, Rodríguez-Cavallini E: Spread of epidemic Clostridium difficile NAP1/027 in Latin America: case reports in Panama. J Med Microbiol. 2014, 63:322-24. 10.1099/jmm.0.066399-0
  41. Karlowsky JA, Adam HJ, Kosowan T, et al.: PCR ribotyping and antimicrobial susceptibility testing of isolates of Clostridium difficile cultured from toxin-positive diarrheal stools of patients receiving medical care in Canadian hospitals: the Canadian Clostridium difficile Surveillance Study (CAN-DIFF) 2013-2015. Diagn Microbiol Infect Dis. 2018, 91:105-11. 10.1016/j.diagmicrobio.2018.01.017
  42. Martínez-Meléndez A, Tijerina-Rodríguez L, Morfin-Otero R, et al.: Circulation of highly drug-resistant Clostridium difficile ribotypes 027 and 001 in two tertiary-care hospitals in Mexico. Microb Drug Resist. 2018, 24:386-92. 10.1089/mdr.2017.0323
  43. Coffman K, Chen XJC, Okamura C, Louie E: IVIG – A cure to severe refractory NAP-1 Clostridium difficile colitis? A case of successful treatment of severe infection, which failed standard therapy including fecal microbiota transplants and fidaxomicin. IDCases. 2017, 8:27-28. 10.1016/j.idcr.2017.03.002
  44. Vickers RJ, Tillotson GS, Nathan R, et al.: Efficacy and safety of ridinilazole compared with vancomycin for the treatment of Clostridium difficile infection: a phase 2, randomised, double-blind, active-controlled, non-inferiority study. Lancet Infect Dis. 2017, 17:735-44. 10.1016/S1473-3099(17)30235-9
  45. Louie T, Nord CE, Talbot GH, et al.: Multicenter, double-blind, randomized, phase 2 study evaluating the novel antibiotic, cadazolid, in patients with Clostridium difficile infection. Antimicrob Agents Chemother. 2015, 59:6266-73. 10.1128/AAC.00504-15
  46. Daley P, Louie T, Lutz JE, et al.: Surotomycin versus vancomycin in adults with Clostridium difficile infection: primary clinical outcomes from the second pivotal, randomized, double-blind, phase 3 trial. J Antimicrob Chemother. 2017, 72:3462-70. 10.1093/jac/dkx299
  47. Aziz M, Chandrasekar VT, Desai M, Fatima R, Jackson M, Sharma P: Sa1858 – surotomycin (a novel antibiotic) vs vancomycin for Clostridium difficile infection: a systematic review and meta analysis. Gastroenterology. 2018, 154:S421.

C.difficile (C.diff.) Infections Continue to Grow in Health Care Facilities Worldwide

The burden of Clostridium difficile (C. diff) continues to grow in health care facilities throughout the United States and around the world.

Gaining a better understanding of sources and risk factors for C. diff can help reverse colonization and transmission or prevent it altogether, authors of a new paper suggest.

To view the article in its entirety, please click on the following link to be redirected:

http://www.contagionlive.com/news/exploring-microbiome-changes-associated-with-c-diff-to-prevent-or-reverse-colonization

“This is a review/commentary article that provides a high-level overview of the literature dealing with C. diff colonization and the microbiome changes associated with C. diff colonization,” author Silvia Munoz-Price, MD, PhD, from the Medical College of Wisconsin in Milwaukee told our sister publication MD Magazine.

After reviewing the literature, authors of the study postulated that when it comes to the potential for C. diff colonization, exposure to and transmissions of the virus occurs outside of hospitals. In fact, it seemed like most of the patients became symptomatic during their hospital stay, rather than acquiring the virus while hospitalized.

For example, the investigators cited one study from Canada that had been conducted from 2006 to 2007 where more than 4000 patients were screened for C. diff colonization upon hospitalization, during their stay (on a weekly basis) and at discharge. They found that 4% of the patients were colonized upon hospitalization and 3% acquired C. diff during their stay in the hospital.

The authors also found evidence indicating that community-acquired C. diff appears to be on the rise. The authors discuss a decade-long study which took place in Minnesota where community-acquired C. diff infection rates rose from 2.8 to 14.9 per 100,000-person-years within the 10-year span. The patients in that study more likely to acquire C. diff were younger, female, and healthier than patients with hospitalization acquired C. diff. The reviewers also said that rates of community-acquired C. diff have also been rising in Finland, Australia, and England, according to published studies.

Most of the common risk factors for community-acquired C. diff infections still applied, the researchers found, including antibiotic exposure, household contact, and animals. A 2013 study showed that two-thirds of community-acquired C. difficile patients were exposed to antibiotics in the preceding 12 weeks of their infection, and about one-third had been exposed to proton pump inhibitors.

While studies examining transmissibility within households are difficult to come by, the study authors found one review from Quebec. The review consisted of 2222 cases of C. diff diagnosed between 1998 and 2009, and investigators found that 8 cases were designated to be transmitted by household contacts. However, the researchers noted, confirmation using strain typing was not performed in that study.

Looking at farm livestock, a 2013 Dutch study showed that individuals with daily contact with pigs showed rates of C. diff positivity of 25%; in those with weekly contact, it was 14%. In the same study, C. diff was found in the manure from all the farms in 10% to 80% of the samples per farm. The reviewers also said that C. diff has been found in the stool of farm chickens, calves, and retail ground meat. Dogs and cats are also known to culture positive for C. diff, and the researchers wrote that the bacteria can also be present in vegetables and water (tap water, swimming pools, as well as rivers, lakes, and seas). They hypothesized that the presence of C. diff in vegetables may come from the use of organic fertilizer.

“We envision that in the future we should be able to take advantage of our increasing knowledge about microbiome changes so that we will be able to: identify patients at risk for de novo C. difficile colonization during their hospitalization and manipulate our patients’ microbiome to prevent or reverse C. difficile colonization,” Dr. Munoz-Price said.

“Different from what we do now, the latter would be accomplished not by withholding or changing antibiotics but by correcting the deficient flora of a patient in an individualized fashion. This new approach would revolutionize the field of Infection Control and Antibiotic Stewardship,” she concluded.

Researchers Find Health Care Costs Associated With a Clostridium difficile Infection (CDI) and Recurrent CDI Shows a Significant Increase

 

“This study is consistent with previous literature that has demonstrated a significant and substantial increase in health care resource utilization for CDI over and above similar patients without CDI,” researcher Dongmu Zhang, PhD, of Merck’s Center for Observational and Real-World Evidence, and colleagues wrote. “It has also shown that having rCDI is associated with substantial health care resource use as compared to similar CDI patients who do not have a recurrence.”

To estimate costs and time of hospitalization associated with CDI and rCDI, the researchers conducted a retrospective observational study. They assessed patient records using databases of commercial and Medicare health care claims. Both databases included information on demographics, diagnoses and prescriptions, among other data.

The researchers matched patients without CDI to those with the infection in a 1:1 ratio to estimate costs and lengths of hospital stay due to primary CDI. They then matched patients with primary CDI 1:1 to those with rCDI in a similar comparison. Each patient was followed for 6 months.

The study included records for 55,504 patients diagnosed with CDI between

July 2010 and July 2014.

The mean patient age was 61.3 years,

62% of patients were women.

Nearly a quarter of patients — 24.8% — had rCDI.

The estimated cumulative hospital stays due to CDI and rCDI were 5.2 days and 1.95 days, respectively.

The estimated health care costs due to CDI and rCDI were $24,205 and $10,580, respectively.

Zhang and colleagues said the data show that clinicians must act to control CDI.

“The health care resource utilization and economic burden associated with primary and rCDI are quite substantial,” they wrote. “Better prevention and treatment of CDI, especially rCDI, are needed.” – by Joe Green

 

To read the article in full entirety please click on the following link:

https://www.healio.com/infectious-disease/nosocomial-infections/news/in-the-journals/%7Bce566ea4-98f0-41d3-a8a3-6e0f2125e3dc%7D/cdi-costs-approach-25000-per-patient

CutisPharma Announces FDA Approval Of FIRVANQ™ (vancomycin hydrochloride) for Oral Solution for Treatment of Clostridium difficile Associated Diarrhea (CDAD) and Staphylococcus aureus Colitis

CutisPharma Announces FDA Approval Of FIRVANQ™ For Treatment Of  Clostridium Difficile Associated Diarrhea (CDAD) And Staphylococcus Aureus Colitis

 

FDA-approved vancomycin oral liquid therapy expected to improve patient access and reduce pharmacist  burden by no longer having to compound liquid formulations

CutisPharma announced today, January 29, 2018,  that the US Food and Drug Administration (FDA) has approved FIRVANQ™ (vancomycin hydrochloride) for oral solution, for the treatment of Clostridium difficile associated diarrhea and enterocolitis caused by Staphylococcus aureus, including methicillin-resistant strains.

“We are pleased to announce the FDA approval of FIRVANQ,” said Neal I. Muni, MD, MSPH, Chief Executive Officer of CutisPharma. “FIRVANQ’s approval is an important step forward to providing patients the only FDA-approved vancomycin oral liquid treatment option for Clostridium difficile associated diarrhea, a life-threatening condition that affects over a half-million patients in the United States annually.”

Upon its launch, which is targeted to be April 2, 2018, FIRVANQ™ will replace CutisPharma’s FIRST®-Vancomycin Unit-of-Use Compounding Kit, which has been available to pharmacists that need a convenient, accurate, and compliant way to compound vancomycin oral liquid therapy. FIRVANQ™ will be commercially available in 25 mg/mL and 50 mg/mL strengths in convenient 150 mL and 300 mL sizes.  FIRVANQ™ is designed to be easy to use and has the potential to be a cost-effective alternative to existing vancomycin therapies.

“As a practicing infectious disease physician treating many patients with CDAD, having an FDA-approved vancomycin oral liquid formulation that is affordable and accessible to my patients is very beneficial,” said Stuart Johnson, MD, Loyola University Medical Center. “Patient access is currently limited by the fact that only a select few pharmacies perform compounding in the outpatient setting these days, given the many new regulations in place.  Availability of an FDA-approved vancomycin oral liquid treatment will effectively allow any pharmacy to stock this therapy, and hopefully encourage third-party payer reimbursement, significantly improving accessibility and convenience for patients.”

About CutisPharma

CutisPharma, Inc., based in Wilmington, Mass., is a privately held, specialty pharmaceutical company that has been the industry leader for 20 years in providing innovative solutions to pharmacists.  CutisPharma’s FIRST® Unit-of-Use Compounding Kits have benefited millions of patients who are unable to swallow conventional oral dosage forms such as tablets and capsules and whose needs are not served by commercially available therapies. The Company’s first FDA-approved Kit will allow significantly broader patient access, convenience to pharmacists and patients alike by reducing the need for compounding, and serve as a potential cost-saving option to existing treatments.  For more information, visit www.cutispharma.com

Zinplava has been launched by MSD in the UK

MSD has launched Zinplava in the UK, offering patients a novel therapeutic option for the prevention of Clostridium difficile recurrence.

Zinplava (bezlotoxumab) is not an antibacterial and is not indicated to actually treat the infection, but is a monoclonal antibody designed to neutralise C. difficile toxin B, which can damage the gut wall and cause inflammation, leading to diarrhoea.

It is the first and only EC licensed non-antibiotic option indicated to prevent recurrence of Clostridium difficile infection (CDI) in high-risk adults.

Around one-in-four patients experience a recurrence after the initial episode, and more than 40 percent of these have further recurrence, highlighting the need for new options able to break the infection cycle.

Pivotal Phase III clinical studies showed the rate of infection recurrence through week 12 to be significantly lower in patients given Zinplava (17.4 percent and 15.7 percent) or Zinplava and actoxumab (15.9 percent and 14.9 percent) than those taking a placebo (27.6 percent) and (25.7 percent), respectively.

“Notably, bezlotoxumab reduces the risk of the recurrence of CDI for at least 3 months, compared with standard of care antibiotic therapy. This is welcome addition to our limited options to reduce the considerable morbidity and mortality associated with CDI,” commented Mark Wilcox, Professor of Medical Microbiology at the University of Leeds.

“Antimicrobial resistance is a key national issue and we hope with bezlotoxumab to not only help achieve a reduction in the number of recurrent episodes of CDI but also a reduction in the amount of antibiotic prescriptions that would otherwise be needed to treat these recurrent episodes,” added Dr Mike England, MSD’s Interim Medical Director.

Zinplava is administered as a single, one-off, one-hour intravenous infusion alongside standard-of-care antibiotic therapy for the treatment of CDI.

 

C Diff Foundation and C diff Survivors Alliance Network Share a Winter 2017 Bulletin

Greetings from the main office of the C Diff Foundation and the C diff Survivors Alliance Network located in New Port Richey, Florida.  As we close 2017 we mark the 5th anniversary of the two organizations. We want to share with you a summary and reflection on this year’s events and campaigns moving our mission forward and message delivered worldwide. The mission and promoting C.diff. Awareness has been shared this year with  listeners in over 25 Counties during Season III on C. diff. Spores and More Global Broadcasting Network (www.cdiffradio.com),  5,000+ visitors during global events, 9,600+ residents and business owners throughout villages and communities by our dedicated volunteer patient advocates, to over 1,000 clinicians who received up-to-date data expanding their knowledge during workshops and local symposiums offered worldwide, 3,000+ incoming calls received through the Nationwide Hot-Line 1-844-FOR-CDIF with the thousands of e-mails received seeking assistance.

After each event, workshop, meeting, introduction we thank the individuals for sharing  in five years of opportunity to provide life-saving data educating and advocating for C. difficile infection prevention, treatments, environmental safety and support worldwide.  The mission of the C Diff Foundation is the momentum of charity that has proven effective and grown over the past five years.  A single act of charity grows into more and greater charity worldwide.  The work each member of the C Diff Foundation, with hundreds of Volunteer Patient Advocates, promote the Foundation’s mission which never stops with a single act.  Instead, it builds, it grows, and it expands into an exponential impact of good in the world helping to save lives.  We thank you for your continued support and encourage you to continue your journey, proposing three verbs important to the C Diff Foundation and the C diff Survivors Alliance Network in general.

The first of these verbs is “to promote” C.diff. Awareness. It is the first step that opens doors in educating individuals, clinicians, communities in learning more about this life-threatening infection which causes a great amount of pain and suffering around the globe.  It is essential and it is the compass in reaching shared goals.

The second verb is “to heighten awareness” across the nation to continue proclaiming November Clostridium difficile infection awareness month. The Governors proclaimed November C. difficile (C.diff) infection awareness month in 2017 and we encourage them “to welcome” this proclamation in 2018 with more than a yearly executive order of greeting or inviting their residents to take notice.  We look forward to working with delegates, with your support, to make this proclamation statement nationwide and welcome the importance of the time, education, programs, and agenda in place addressing this life-threatening infection.  The C Diff Foundation advocates and supports the individuals and families suffering during and after being treated for a C. diff. infection.

Finally, the third verb that the C Diff Foundation and C diff Survivors Alliance Network propose is “to go.”  Here we are all challenged to do something big or small — with what we are able to do.  With the unity of members with volunteers with patients, families, and clinicians we can make a difference with enthusiasm and simplicity to get up and go.  We can do for others  today what we could not do for ourselves during our time of illnesses, during the long periods of isolation, during the losses, and during the pain and suffering.

As members of the C Diff Foundation we know that our enthusiasm  for our mission is the desire to bring awareness and promote C. difficile infection prevention, treatments, environmental safety and support worldwide.  We witness changes by the data and information being delivered within villages,  through major cities and in small communities — it is only by taking this path that we gain satisfaction knowing that the news delivered with enthusiasm “to promote, to heighten awareness and to go” with the members and volunteers in the C Diff Foundation and C diff Survivors Alliance Network creates positive results.

We are truly grateful for your continued dedication, efforts and support and thank you again for making this year’s November anniversary such a special occasion through the growth and advances made worldwide.   Let’s carry the mission into the New Year, carving new paths to witness the decline of newly diagnosed cases of Clostridium difficile (C.diff., C. difficile) infections and saving lives worldwide.

“None of us can do this alone ~ All of us can do this together.”