Tag Archives: American Gut Project

The American Gastroenterological Association (AGA) Fecal Microbiota Transplantation (FMT) National Registry Enrolls First Patient

Largest planned fecal microbiota transplantation (FMT) study enrolls first patient

The FMT National Registry also announces collaborations with American Gut and OpenBiome

The first participant has enrolled in the American Gastroenterological Association (AGA) Fecal Microbiota Transplantation (FMT) National Registry, which is planned to be the largest FMT study ever.

The AGA FMT National Registry — funded by the National Institutes of Health (NIH) and administered by the AGA Center for Gut Microbiome Research and Educationwill track 4,000 patients for 10 years after their FMT procedure, providing a wealth of data about the procedure’s effectiveness and both short- and long-term effects of FMT.

Fecal microbiota transplant is a medical procedure in which the stool from a healthy person is prepared and then put into the intestine of a sick patient. FMT is most commonly used to treat Clostridium difficile (C. diff) infection, if antibiotics have not been able to get rid of the infection.

“Today is an important milestone for the AGA FMT National Registry. What’s ahead is a significant repository of data for investigators working to advance FMT research, better information for physicians on when and how to use FMT, and reassurance for patients that we now understand the risks and benefits of this procedure,” said Gary D. Wu, MD, a principal investigator for the registry and founding chair of the AGA Center for Gut Microbiome Research and Education scientific advisory board. “We look forward to embarking on this comprehensive data collection project and are eager to share our findings with the public.”

First Patient Enrolled

The first patient enrolled in the FMT National Registry received a fecal transplant through the Gastroenterology Center of Connecticut/Medical Research Center of Connecticut by Paul Feuerstadt, MD, assistant clinical professor of medicine at Yale School of Medicine, New Haven, CT. The patient being treated had experienced multiple recurrences of C. difficile infection. As part of the registry,

Dr. Feuerstadt will follow up with the patient four times over the next two years and report back on the patient’s health post-FMT. The patient will also provide yearly reports for up to 10 years.

How Patients Can Take Part in the FMT National Registry

AGA expects 75 sites to be included in this registry. Visit ClinicalTrials.Gov <https://clinicaltrials.gov/ct2/show/study/NCT03325855?cond=FMT+National+registry&rank=1> on a regular basis to track new sites added to the registry. Patients should reach out to their health care provider to discuss participation in the registry.

Patients should first review AGA’s patient information on fecal microbiota transplantation (FMT) <http://www.gastro.org/info_for_patients/clostridium-difficile-106-fmt-details>.

UC San Diego to Build FMT National Registry Biobank

AGA is collaborating with the American Gut Project — an academic effort run by the laboratory of Rob Knight, PhD, professor and director of the Center for Microbiome Innovation at the University of California, San Diego — to build a biobank of stool samples from participants in the FMT National Registry. American Gut will receive stool samples from registry participants before and after their FMT. The microbiota will be sequenced in each sample, and remaining material will be frozen to be made available for future research. Eventually, this information could help doctors screen and select the best donor samples for individual patients.

OpenBiome Joins as a Registry Collaborator

AGA is also collaborating with OpenBiome, a public stool bank and nonprofit research organization that provides clinicians with rigorously screened, ready-to-use stool preparations for fecal transplant procedures. As the only public stool bank in the country, OpenBiome serves as the source of stool preparations for nearly 1,000 clinical partners performing FMT across the United States. For patients enrolled in the registry who receive OpenBiome FMT material, OpenBiome will provide screening information and samples to support the registry’s research analyses.

To read this article in its full entity, please click on the following link to be redirected:

https://www.eurekalert.org/pub_releases/2018-01/aga-lpf010918.php

Study shows Microbiome Differences Between Intensive Care Unit Patients Hospitalized From Healthy Patients

laboratorystill

 

The microbiome of patients admitted to the intensive care unit (ICU) at a hospital differs dramatically from that of healthy patients, according to a new study published in mSphere.

 

Researchers analyzing microbial taxa in ICU patients’ guts, mouth and skin reported finding dysbiosis, or a bacterial imbalance, that worsened during a patient’s stay in the hospital. Compared to healthy people, ICU patients had depleted populations of commensal, health-promoting microbes and higher counts of bacterial taxa with pathogenic strains – leaving patients vulnerable to hospital-acquired infections that may lead to sepsis, organ failure and potentially death.

What is dysbiosis?  Pathogens, antibiotic use, diet, inflammation, and other forces can cause dysbiosis, a disruption in these microbial ecosystems that can lead to or perpetuate disease  (1)

What makes a gut microbiome healthy or not remains poorly defined in the field. Nonetheless, researchers suspect that critical illness requiring a stay in the ICU is associated with the the loss of bacteria that help keep a person healthy. The new study, which prospectively monitored and tracked changes in bacterial makeup, delivers evidence for that hypothesis.
“The results were what we feared them to be,” says study leader Paul Wischmeyer, an anesthesiologist at the University of Colorado School of Medicine. “We saw a massive depletion of normal, health-promoting species.”
Wischmeyer, who will move to Duke University in the fall, runs a lab that focuses on nutrition-related interventions to improve outcomes for critically ill patients.

He notes that treatments used in the ICU – including courses of powerful antibiotics, medicines to sustain blood pressure, and lack of nutrition – can reduce the population of known healthy bacteria. An understanding of how those changes affect patient outcomes could guide the development of targeted interventions to restore bacterial balance, which in turn could reduce the risk of infection by dangerous pathogens.
Previous studies have tracked microbiome changes in individual or small numbers of critically ill patients, but Wischmeyer and his collaborators analyzed skin, stool, and oral samples from 115 ICU patients across four hospitals in the United States and Canada. They analyzed bacterial populations in the samples twice – once 48 hours after admission, and again after 10 days in the ICU (or when the patient was discharged). They also recorded what the patients ate, what treatments patients received, and what infections patients incurred.
The researchers compared their data to data collected from a healthy subset of people who participated in the American Gut project dataset. (American Gut is a crowd-sourced project aimed at characterizing the human microbiome by the Rob Knight Lab at the University of California San Diego.) They reported that samples from ICU patients showed lower levels of Firmicutes and Bacteroidetes bacteria, two of the largest groups of microbes in the gut, and higher abundances of Proteobacteria, which include many pathogens.
Wischmeyer was surprised by how quickly the microbiome changed in the patients. “We saw the rapid rise of organisms clearly associated with disease,” he says. “In some cases, those organisms became 95 percent of the entire gut flora – all made up of one pathogenic taxa – within days of admission to the ICU. That was really striking.” Notably, the researchers reported that some of the patient microbiomes, even at the time of admission, resembled the microbiomes of corpses. “That happened in more people than we would like to have seen,” he says.
Wischmeyer suggests the microbiome could be tracked like other vital signs and could potentially be used to identify patient problems and risks before they become symptomatic. In addition, now that researchers have begun to understand how the microbiome changes in the ICU, Wischmeyer says the next step is to use the data to identify therapies – perhaps including probiotics – to restore a healthy bacterial balance to patients.
Everyone who collaborated on the project – including dietitians, pharmacists, statisticians, critical care physicians, and computer scientists – participated on a largely voluntary basis without significant funding to explore the role of the microbiome in ICU medicine, says Wischmeyer.

 

To read this article in its entirety please click on the following link:

https://www.asm.org/index.php/journal-press-releases/94540-icu-patients-lose-helpful-gut-bacteria-within-days-of-hospital-admission?platform=hootsuite

Sources:

(1)  http://www.serestherapeutics.com