Tag Archives: C.difficile research abstract

CspC Plays a Critical Role in Regulating C. diff. Spore Germination in Response to Multiple Environmental Signals.


The gastrointestinal pathogen, Clostridioides difficile, initiates infection when its metabolically dormant spore form germinates in the mammalian gut. While most spore-forming bacteria use transmembrane germinant receptors to sense nutrient germinants, C. difficile is thought to use the soluble pseudoprotease, CspC, to detect bile acid germinants. To gain insight into CspC’s unique mechanism of action, we solved its crystal structure. Guided by this structure, we identified CspC mutations that confer either hypo- or hyper-sensitivity to bile acid germinant. Surprisingly, hyper-sensitive CspC variants exhibited bile acid-independent germination as well as increased sensitivity to amino acid and/or calcium co-germinants. Since mutations in specific residues altered CspC’s responsiveness to these different signals, CspC plays a critical role in regulating C. difficile spore germination in response to multiple environmental signals. Taken together, these studies implicate CspC as being intimately involved in the detection of distinct classes of co-germinants in addition to bile acids and thus raises the possibility that CspC functions as a signaling node rather than a ligand-binding receptor

Author summary

The major nosocomial pathogen Clostridioides difficile depends on spore germination to initiate infection. Interestingly, C. difficile’s germinant sensing mechanism differs markedly from other spore-forming bacteria, since it uses bile acids to induce germination and lacks the transmembrane germinant receptors conserved in almost all spore-forming organisms. Instead, C. difficile is thought to use CspC, a soluble pseudoprotease, to sense these unique bile acid germinants. To gain insight into how a pseudoprotease senses germinant and propagates this signal, we solved the crystal structure of C. difficile CspC. Guided by this structure, we identified mutations that alter the sensitivity of C. difficile spores to not only bile acid germinant but also to amino acid and calcium co-germinants. Taken together, our study implicates CspC in either directly or indirectly sensing these diverse small molecules and thus raises new questions regarding how C. difficile spores physically detect bile acid germinants and co-germinants.


  • Amy E. Rohlfing ,
  • Brian E. Eckenroth ,
  • Emily R. Forster,
  • Yuzo Kevorkian,
  • M. Lauren Donnelly,
  • Hector Benito de la Puebla,
  • Sylvie Doublié,
  • Aimee Shen

To view the Abstract in its entirety – please click on the link provided below:


  • Published: July 5, 2019

Researchers Find Sulfated glycosaminoglycans and Low-Density Lipoprotein Receptor Contribute To Clostridioides difficile Toxin A Cell Entry



Clostridium difficile toxin A (TcdA) is a major exotoxin contributing to disruption of the colonic epithelium during C. difficile infection. TcdA contains a carbohydrate-binding combined repetitive oligopeptides (CROPs) domain that mediates its attachment to cell surfaces, but recent data suggest the existence of CROPs-independent receptors. Here, we carried out genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated screens using a truncated TcdA lacking the CROPs, and identified sulfated glycosaminoglycans (sGAGs) and low-density lipoprotein receptor (LDLR) as host factors contributing to binding and entry of TcdA. TcdA recognizes the sulfation group in sGAGs. Blocking sulfation and glycosaminoglycan synthesis reduces TcdA binding and entry into cells. Binding of TcdA to the colonic epithelium can be reduced by surfen, a small molecule that masks sGAGs, by GM-1111, a sulfated heparan sulfate analogue, and by sulfated cyclodextrin, a sulfated small molecule. Cells lacking LDLR also show reduced sensitivity to TcdA, although binding between LDLR and TcdA are not detected, suggesting that LDLR may facilitate endocytosis of TcdA. Finally, GM-1111 reduces TcdA-induced fluid accumulation and tissue damage in the colon in a mouse model in which TcdA is injected into the caecum. These data demonstrate in vivo and pathological relevance of TcdA-sGAGs interactions, and reveal a potential therapeutic approach of protecting colonic tissues by blocking these interactions.

To view abstract in its entirety please click on the following link to be redirected:  https://www.ncbi.nlm.nih.gov/pubmed/31160825?dopt=Abstract&utm_source=dlvr.it&utm_medium=twitter