Tag Archives: Clostridioides difficile Infection

Researchers Examined the Effect of Disinfectant on C. difficile Spores and How They Survived Afterwards On Surfaces Including Isolation Gowns, Stainless Steel and Vinyl Flooring

In lab studies, researchers found that C. diff spread easily from disposable gowns often employed in surgery or infection control to stainless steel and vinyl surfaces.

“The [bacteria] also transferred to vinyl flooring, which was quite disturbing. We didn’t realize they would,” said Tina Joshi, a lecturer in molecular microbiology at the University of Plymouth in the United Kingdom and lead author of the new study.

“These bugs evolve. These bugs like to stay one step ahead. And even though we’re using disinfectants and antibiotics appropriately, they still will become resistant in time. It’s inevitable,” Joshi said.

The bacteria, called Clostridioides difficile or C. diff., cause almost a half million infections every year in the United States, according to the Centers for Disease Control and Prevention.

The infection, which is spread by fecal to oral transmission, causes severe diarrhea, and can lead to intestinal inflammation and kidney failure. Those most at risk are people who have been given strong antibiotics, as well as those with long hospital stays, or those living in long-term care facilities like the elderly.

That means that keeping these facilities clean is incredibly important. But new research, published Friday (7/12/19)  in the journal Applied and Environmental Microbiology, shows how difficult that can be.

In lab studies, researchers found that C. diff spread easily from disposable gowns often employed in surgery or infection control to stainless steel and vinyl surfaces.

These bugs evolve. These bugs like to stay one step ahead. And even though we’re using disinfectants and antibiotics appropriately, they still will become resistant in time. It’s inevitable.

What’s more, the bacteria didn’t die when the researchers tried to kill them with concentrated chlorine disinfectant.

“Even if we applied 1,000 parts per million of chlorine, it would allow spores to survive in the gowns,” Joshi told NBC News.

It’s possible that increasing the amount of chlorine might kill the spores, but if the spores are indeed becoming resistant to the disinfectant, it will only be a matter of time before the stronger concentrations can’t kill them.

“These bugs evolve. These bugs like to stay one step ahead. And even though we’re using disinfectants and antibiotics appropriately, they still will become resistant in time. It’s inevitable,” Joshi said.

C. diff infections can occur when a patient is given broad spectrum antibiotics to tackle another infection.

If the bacteria aren’t killed, hospital patients or people in nursing homes can become infected when they come into contact with contaminated surfaces, such as a bedside food tray.

But if traditional disinfectants are ineffective, as the new research suggests, what works?

One option is UV light, which could be useful in killing the bacteria. However, it can be challenging to make sure all surfaces are fully exposed to the light. At this point, Joshi said, highly concentrated bleach appears to be the best option.

For those who care for patients with compromised immune systems at home, the C. Diff Foundation says alcohol-based hand sanitizers are ineffective against the bacteria.

On its website, the group recommends using a cleaning solution of one cup bleach to nine cups of water, and leaving the mixture on surfaces for a minimum of 10 minutes. (Basic & Generic, not EPA registered product).

Meanwhile, if C. diff spores can survive on gowns and other surfaces, it is likely also the case that they can live on doctor’s coats and scrubs worn by hospital personnel all day.  (C Diff Foundation agrees)

“That’s a real infection control hazard, because these spores can stick to fibers. We’ve proven that in this paper,” Joshi said.

Erika Edwards

Erika Edwards is the health and medical news writer/reporter for NBC News and Today.

 

To read the article in its entirety please click on the following link to be redirected:

https://www.nbcnews.com/health/health-news/dangerous-bacteria-can-survive-disinfectant-putting-patients-risk-n1029231

 

 

CspC Plays a Critical Role in Regulating C. diff. Spore Germination in Response to Multiple Environmental Signals.


Abstract

The gastrointestinal pathogen, Clostridioides difficile, initiates infection when its metabolically dormant spore form germinates in the mammalian gut. While most spore-forming bacteria use transmembrane germinant receptors to sense nutrient germinants, C. difficile is thought to use the soluble pseudoprotease, CspC, to detect bile acid germinants. To gain insight into CspC’s unique mechanism of action, we solved its crystal structure. Guided by this structure, we identified CspC mutations that confer either hypo- or hyper-sensitivity to bile acid germinant. Surprisingly, hyper-sensitive CspC variants exhibited bile acid-independent germination as well as increased sensitivity to amino acid and/or calcium co-germinants. Since mutations in specific residues altered CspC’s responsiveness to these different signals, CspC plays a critical role in regulating C. difficile spore germination in response to multiple environmental signals. Taken together, these studies implicate CspC as being intimately involved in the detection of distinct classes of co-germinants in addition to bile acids and thus raises the possibility that CspC functions as a signaling node rather than a ligand-binding receptor

Author summary

The major nosocomial pathogen Clostridioides difficile depends on spore germination to initiate infection. Interestingly, C. difficile’s germinant sensing mechanism differs markedly from other spore-forming bacteria, since it uses bile acids to induce germination and lacks the transmembrane germinant receptors conserved in almost all spore-forming organisms. Instead, C. difficile is thought to use CspC, a soluble pseudoprotease, to sense these unique bile acid germinants. To gain insight into how a pseudoprotease senses germinant and propagates this signal, we solved the crystal structure of C. difficile CspC. Guided by this structure, we identified mutations that alter the sensitivity of C. difficile spores to not only bile acid germinant but also to amino acid and calcium co-germinants. Taken together, our study implicates CspC in either directly or indirectly sensing these diverse small molecules and thus raises new questions regarding how C. difficile spores physically detect bile acid germinants and co-germinants.

Authors:

  • Amy E. Rohlfing ,
  • Brian E. Eckenroth ,
  • Emily R. Forster,
  • Yuzo Kevorkian,
  • M. Lauren Donnelly,
  • Hector Benito de la Puebla,
  • Sylvie Doublié,
  • Aimee Shen

To view the Abstract in its entirety – please click on the link provided below:

https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008224

  • Published: July 5, 2019

On June 13th the U.S. Food and Drug Administration Warned of Infections From Fecal Microbiota Transplantation (FMT) Linked to a Patient’s Death

Dr. Peter Marks, director the Center for Biologics Evaluation and Research at the U.S. Food and Drug Administration stated, “While we support this area of scientific discovery, it’s important to note that fecal microbiota for transplantation does not come without risk,”

Two patients contracted severe infections, and one of them died, from fecal transplants that contained drug-resistant bacteria.

The agency said two patients received donated stool that had not been screened for drug-resistant germs, leading it to halt clinical trials until researchers prove proper testing procedures are in place.

After reports of serious, antibiotic-resistant infections linked to the procedures, the FDA wants “to alert all health care professionals who administer FMT [fecal microbiota transplant] about this potential serious risk so they can inform their patients.” said Dr. Peter Marks, director the Center for Biologics Evaluation and Research at the U.S. Food and Drug Administration.

Other samples from the same donor were tested after the patients got sick. The samples were found to harbor the same dangerous germs found in the patients, known as multi-drug-resistant organisms (MDRO). They were E. coli bacteria that produced an enzyme called extended-spectrum beta-lactamase, which makes them resistant to multiple antibiotics. The stool had not been tested for the germs before being given to the patients.

The F.D.A. on Thursday issued a warning to researchers that stool from donors in studies of fecal transplantation should be screened for drug-resistant microbes, and not used if those were present. It is also warning patients that the procedure can be risky, is not approved by the agency and should be used only as a last resort when C. difficile does not respond to standard treatments.

Dr. Marks said the agency was trying to strike a balance between giving patients who need the treatment access to it while also establishing safeguards to protect them from infection. In a statement, he said, “While we support this area of scientific discovery, it’s important to note that fecal microbiota for transplantation does not come without risk.”

Researchers are also looking into the use of fecal transplants to treat chronic gastrointestinal illnesses such as ulcerative colitis or irritable bowel syndrome.

The patients received treatment as part of a clinical trial, and the researchers conducting the trial reported the cases as adverse events to the F.D.A., which they are required to do. But the rules governing this kind of experiment prohibit the F.D.A. from revealing details about the treatment or who provided it.

 

SOURCE:  https://www.nytimes.com/2019/06/13/health/fecal-transplant-fda.html

C Diff Foundation Welcomes Dr. Sahil Khanna, M.B.B.S.

We are pleased to welcome Dr. Sahil Khanna
as a Member of the C Diff Foundation and Medical Advisory Board.

Dr. Sahil Khanna is an Associate Professor of Medicine in the Division of Gastroenterology and Hepatology at Mayo Clinic, Rochester, MN. He is directing the Comprehensive Gastroenterology Interest group,
C. difficile Clinic, Fecal Microbiota Transplantation program and
C. difficile related Clinical Trials at Mayo Clinic, Rochester, MN.

He completed Medical School at the All India Institute of Medical Sciences, New Delhi; followed by Post Doctoral Research at University of California San Diego, CA; residency in Internal Medicine and Fellowship in Gastroenterology and Hepatology at Mayo Clinic, Rochester, MN before joining the Faculty. He also completed Masters in Clinical and Translational Sciences during his fellowship. His research and clinical interests include Epidemiology, Outcomes and Emerging Therapeutics for Clostridium difficile infection, an arena in which he has had numerous publications and presentations.

Dr. Khanna has over 100 peer-reviewed publications and serves as reviewer and on the editorial board of several journals. He has won numerous awards including the Miles and Shirley Fiterman Award, Mayo Brothers Distinguished Fellowship Award, Donald C. Balfour Mayo Clinic Alumni Association Research Award, Hartz Foundation Young Investigators’ Scholarship and the Most Distinguished Resident Physician Award from the American Association of Physicians of Indian Origin.

C Diff Foundation Announces Appointment of Paul Feuerstadt, M.D., Director of Medical Education

C Diff Foundation, a one hundred percent volunteer, world renowned 501(c)(3) not-for-profit organization, has appointed nationally renowned Gastroenterologist, Dr. Paul Feuerstadt as its first Director of Medical Education.

Dr. Feuerstadt said, “It is my honor to accept this position. I have been involved with the C Diff Foundation over the last 4.5 years and I look forward to assisting in the continued growth of the organization and ensuring that forward progress, awareness and education increases under my tenure. I look forward to working with the board and volunteers to increase awareness and funding across the country and around the world to highlight this disease through in person events, social media, and in the press.”

Dr. Feuerstadt has spent his career refining his practice and expertise in C. difficile. He is dedicated to educating the public through his work with this organization.

Additionally, he plans to offer free patient and provider education through the launch of his new educational website, EverythingCdifficile.com. The goal of the site is to provide education through short videos with relevant clinical information for educational purposes. The site provides concise 3-5 minute lectures covering core topics, recent publications and major conferences about C. difficile infection to educate both patients and providers.

Nancy C. Caralla, Founding President, C Diff Foundation, commented: “Dr. Feuerstadt is a pre-eminent doctor in this space. His dedication and donation of his time and energy to this worthy cause has helped so many patients to date. We look forward to his enhanced leadership and knowledge as the organization grows and strengthens through our advocacy in
the C.diff. community. Dr. Feuerstadt’s new role as Director of Medical Education will provide an additional avenue of support to patients, families, caregivers, and healthcare providers  through his educational media available on EverythingCdifficile.com. We are grateful for Dr. Feuerstadt’s time and dedication as we continue fighting this debilitating disease worldwide.”

About Dr. Paul Feuerstadt:

His areas of interest Clostridioides difficile infection and ischemic diseases of the gut and in these areas he has presented his research extensively, authored and co-authored many manuscripts, textbook chapters and online modules. Another passion of Dr. Feuerstadt’s is teaching, frequently giving lectures locally, regionally and nationally. He holds a clinical appointment as an Assistant Clinical Professor of Medicine at the Yale University School of Medicine and is a full time attending physician at the Gastroenterology Center of Connecticut seeing patients with a broad spectrum of clinical gastroenterological diseases.

Dr. Feuerstadt attended the Weill Medical College of Cornell University in Manhattan for medical school and completed his residency in internal medicine at New York Presbyterian Hospital/Weill Cornell. His clinical fellowship training was completed at Montefiore Medical Center in the Bronx, New York.

 

 

First Isolation of C.diff. PCR Ribotype 027 and Epidemiological Research of CDI in Hospitalized Adults In Tongji Hospital, Central China

Abstract

Author Information: Zhou Y1, Mao L2, Yu J2, Lin Q2, Luo Y2, Zhu X3, Sun Z4.

BACKGROUND:

Clostridium difficile infection (CDI) is an emerging healthcare problem in the world. The purpose of this study was to perform a systematic epidemiological research of CDI in Tongji hospital, the central of China.

METHODS:

Stool samples from hospitalized adults suspected of CDI were enrolled. The diagnosis of CDI were based on the combination of clinical symptoms and laboratory results. Clinical features of CDI and non-CDI patients were compared by appropriate statistical tests to determine the risk factors of CDI. Multilocus sequence typing (MLST) was employed for molecular epidemiological analysis. Susceptibility testing and relevant antimicrobial agent resistance genes were performed as well.

RESULTS:

From June 2016 to September 2017, 839 hospitalized adults were enrolled. Among them, 107 (12.8%, 107/839) patients were C. difficile culture positive, and 73 (8.7%, 73/839) were infected with toxigenic C. difficile (TCD), with tcdA + tcdB+ strains accounting for 90.4% (66/73) and tcdA-tcdB+ for 9.6% (7/73). Meanwhile, two TCD strains were binary toxin positive and one of them was finally identified as CD027. Severe symptoms were observed in these two cases. Multivariate analysis indicated antibiotic exposure (p = 0.001, OR = 5.035) and kidney disease (p = 0.015, OR = 8.329) significantly increased the risk of CDI. Phylogenetic tree analysis demonstrated 21 different STs, including one new ST (ST467); and the most dominant type was ST54 (35.6%, 26/73). Multidrug-resistant (MDR) TCD were 53.4% (39/73); resistance to ciprofloxacin, erythromycin, and clindamycin were > 50%. Other antibiotics showed relative efficiency and all strains were susceptible to metronidazole and vancomycin. All moxifloxacin-resistant isolates carried a mutation in GyrA (Thr82 → Ile), with one both having mutation in GyrB (Ser366 → Ala).

CONCLUSIONS:

Knowledge of epidemiological information for CDI is limited in China. Our finding indicated tcdA + tcdB+ C. difficile strains were the dominant for CDI in our hospital. Significant risk factors for CDI in our setting appeared to be antibiotic exposure and kidney disease. Metronidazole and vancomycin were still effective for CDI. Although no outbreak was observed, the first isolation of CD027 in center China implied the potential spread of this hypervirulent clone. Further studies are needed to enhance our understanding of the epidemiology of CDI in China.

Source:  https://www.ncbi.nlm.nih.gov/pubmed/30845918?dopt=Abstract&utm_source=dlvr.it&utm_medium=twitter