Tag Archives: How often should bed linens be change?

Contaminated Bed Linens and Microbes

Federal health officials recently reported that at least two million Americans are infected every year by antibiotic-resistant bacteria, and at least 23,000 die from those infections (1). This harsh reality of hospital infections means that there is no doubting the importance of their control and prevention. Limiting the spread of infection will require novel infection control strategies. A key element of this strategy is to control the dispersal of microbes via contaminated bed linen, mattresses and other points of close contact with infected individuals (2).

As modern-day hospital infection control measures improve, there is an increased focus on bed linen and associated materials as possible sources of infection. Fijan and Turk (3), identify incidences of Staphylococcus aureusEnterococcus faeciumPseudomonas aeruginosa and Enterobacter aerogenes surviving temperatures of 60°C during standard washing processes. A study by Craemer and Humphries, (4) outlined many of the issues posed by inadequate cleaning of hospital beds. It was advocated that decontamination should be performed once a week in cases where patients were at a particular risk of infection. The optimal bed linen described was that which is easily washed and dried and has the lowest potential to harbour microorganisms. In addition, it is reaffirmed that pillows and mattresses warrant the greatest level of attention due to their proximity to patients undergoing care. The correct maintenance of storage presses and trolleys as part of any decontamination process is highlighted as an area that should also be considered as part of such a strategy.

A healthy individual is a reservoir of microbial contaminants that for the most part do not result in any adverse health effects. The innate and adaptive immune system combines with the physical barriers of the body to protect individuals from infection. As humans constantly shed skin, hair, saliva and sebaceous particles from their bodies in bed, the knock-on effect is the accumulation of microorganisms in bed linen. However, the development and persistence of dust mites and dust mite allergen (Der p 1 or Der f 1) in pillows is a major factor for people with immune hypersensitivity. It has been established that Der p 1 levels in house dust exceeding 2 µg/g are sufficient for eliciting an allergic/asthmatic response (5). In instances where an individual is immunocompromised, has an underlying infection, or has other predisposing factors such as asthma that make them susceptible to infectious diseases, the environment in which the person finds themselves may have a strong influence on their health.

The issues surrounding textiles in bedding and their role in reducing the risk of diminishing the health of individuals is not limited to the hospital setting. Recently, a national pillow health check performed in Ireland in conjunction with Gabriel Scientific and airmid healthgroup laboratories gave some indication as to the potential levels of contaminants present as we sleep. The study unveiled extremely high levels of bacteria and fungi in a selection of pillows that were analyzed. In addition, the concentration of dust mite allergen was found in some cases to be above the levels that have been demonstrated to elicit severe allergenic responses. Interestingly, a survey undertaken by those who submitted pillows for testing showed occurrences of contamination were frequently associated with factors such as the pillows being older, lower frequency of cleaning and reporting of poor sleep quality. While further research in this area is warranted to provide meaningful statistical correlations between contamination levels and the development and persistence of clinical manifestations, this work has strengthened the opinion that an improvement of an individual’s health may be enhanced by more frequent laundering of bed linen using better methods.

To view the article in its entirety, please click on the link below to be redirected:

https://www.airmidhealthgroup.com/resources-at-airmidhealthgroup/articles/742-contamination-of-bed-linen-factors-in-microbial-and-allergen-accumulation.html

 

To protect individuals from infection, the development of fabrics and textiles has led towards a more active means of preventing microbial growth. The practice of impregnating textiles with divalent cations such as silver or copper as a means to disrupt microbial membrane stability has been proposed as a solution, with claims of antifouling properties, odor control and prevention of topical infection (6, 7) The principal weakness of this technology is the leaching effect overtime during conventional washing of fabrics, depending on the manufacturing process, which may reduce the efficacy of such treatments (8). In addition, there is a growing body of evidence to suggest that this may pose an environmental risk as bioaccumulation of silver in aquatic life result in toxicity for marine life (9). Nevertheless, the application of such textile design and the development of new antimicrobial technologies could represent an invaluable tactic in controlling the spread of infections. Looking to the future, a combination of bed protection systems that are easily cleaned as well as the application of novel technologies in the construction of antimicrobial textiles could be one way in which the spread of infections is controlled.

About the author
John Fallon PhD is a Senior Microbiologist at airmid healthgroup, which helps clients with products and services related to residential and commercial indoor environments to differentiate their customer offerings through health-relevant marketing claims. Clients include Dyson Inc., LG Electronics, Stanley Steemer, Shaw Industries, Fellowes, Spring Air, Tarkett and Kenmore. airmid creates value for clients through a number of collaborative strategies, including field research projects, environmental test chamber studies and licensing our own intellectual property. airmid specializes in studying the relationship between allergens, viruses, bacteria, molds or other ultra-fine particles in the air and on surfaces to the spread of illness and disease in buildings. As a leading authority on biomedical and aerobiology research, they use this deep domain knowledge to improve products and services to make the indoor environment as healthy as possible. For more information, visit www.airmidhealthgroup.com.

References

  1. http://www.cdc.gov/drugresistance/threat-report-2013/
  2. Thilagavathi, G. and T. Kannaian, (2008). Dual antimicrobial and blood repellent finish for cotton hospital fabrics. Indian Journal of Fibre and Textile Research; 33: 23 – 29.
  3. Fijan, S. and S.S Turk, (2012). Hospital textiles, are they a possible vehicle for healthcare-associated infections? International Journal of Environmental Research and Public Health; 9 (9): 3330 – 3343.
  4. Craemer, E. and H. Humphreys, (2008). The contribution of beds to healthcare-associated infection: the importance of adequate decontamination. Journal of Hospital Infection; 69 (1): 8-23.
  5. Platts-Mills, T.A., Vervloet, D., Thomas, W.R., Aalberse, R.C. and M.D. Chapman, (1997). Indoor allergens and asthma: report of the Third International Workshop. Journal of Allergy and Clinical Immunology; 100 (6): S1 – S24.
  6. Borkow, G. and Gabbay, J. (2004). Putting Copper into Action: Copper-impregnated Products with Potent Biocidal Activities. FASEB Journal; 18(14): 1728-1730.
  7. Haug, S., Roll, A., Schmid-Grendelmeier, P., Johansen, P. Wüthrich, B. Kündig, T. and G. Sent, (2006). Coated Textiles in the Treatment of Atopic Dermatitis. Current problems in dermatology; 33: 144 – 151.
  8. Benn, T.M and P. Westerhoff, (2008). Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science and Technology; 42 (11): 4133 – 4139.
  9. Mathivanan, V., Ananth, S. Ganesh Prabu, P. and Selvisabhanayakam, (2012). Role of silver nanoparticles: behavior and effects in the aquatic environment – a review. International Journal of Research in Biological Sciences; 2 (2): 77 – 82

Changing the Bed Linens In Sickness and In Health

According to Microbiologist, Phillip Tierno of New York University

our bed linens can “quickly blossom into a botanical park of bacteria and fungus.”

If left for too long, the microscopic life within the wrinkles and folds of our bed sheets can even make us sick,

> We can recall – years ago – the bed linens in any acute care facility (e.g., hospital) the bed linens were changed daily.   Food for thought <<

 

Humans naturally produce roughly 26 gallons of sweat in bed every year. When it’s hot and humid outside, this moisture becomes what scientists call an “ideal fungal culture medium.”

In a recent study that assessed the level of fungal contamination in bedding, researchers found that a test sample of feather and synthetic pillows that were 1 1/2 to 20 years old contained as many as 16 species of fungus each.

And it’s not just your own microbial life you’re sleeping with. In addition to the fungi and bacteria that come from your sweat, sputum, skin cells, and vaginal and anal excretions, you also share your bed with foreign microbes.

These include animal dander, pollen, soil, lint, dust mite debris and feces, and finishing agents from whatever your sheets are made from, to name a few.

Tierno says all that gunk becomes “significant” in as little as a week. And unclean bedding still exposes you to materials that can trigger the sniffing and sneezing, since the microbes are so close to your mouth and nose that you’re almost forced to breathe them in.

“Even if you don’t have allergies per se, you can have an allergic response,” Tierno said.

Another reason your sheets get dirty quickly has little to do with your behavior or sweat patterns — the issue is simply gravity.

“Just like Rome over time was buried with the debris that falls from gravity, gravity is what brings all that material into your mattress,” Tierno said.

One to two weeks of this buildup is enough to leave anyone with a scratchy throat — especially those with significant allergies or asthma. (One in six Americans has allergies.)

“If you touched dog poo in the street, you’d want to wash your hands,” Tierno said.

“Consider that analogous to your bedding. If you saw what was there — but of course you don’t see it — after a while you have to say to yourself, ‘Do I want to sleep in that?’

So what does Dr. Tierno suggest?

To stem the invisible tide, he said, sheets should be washed once a week — >> More Often when bed linens are visibly soiled and an infection is being treated <<


Proper ways to handle soiled linens:

There is now a common understanding that linens, once in use, are usually contaminated and could be harboring microorganisms such as MRSA and VRE.

Further, the Centers for Disease Control and Prevention (CDC) cautions that healthcare professionals should “handle contaminated textiles and fabrics with a minimum agitation to avoid contamination of air, surfaces, and persons.” Even one of the leading nursing textbooks, Fundamentals of Nursing, states, “Soiled linen is never shaken in the air because shaking can disseminate secretions and excretions and the micro organisms they contain.” This text also states, “…linens that have been soiled with excretions and secretions harbor microorganisms … can be transmitted to others.”

According to Fundamentals of Nursing, when handling linens in any acute care and healthcare facility:

1. You should always wash your hands after handling a patient’s bed linens.

2. You should hold soiled linen away from your uniform.

3. Soiled linen is never shaken in the air because shaking can disseminate the micro-organisms they contain.

4. Linen from one patient’s bed is never (even momentarily) placed on another patient’s bed.

5. Soiled linens should be placed directly into a portable linen hamper or tucked into a pillowcase and the end of the bed before it is gathered up for disposal in the linen hamper or linen chute.

 

To read this article in its entirety – please click on the following link:

http://www.businessinsider.com/how-often-to-wash-bed-sheets-2017-6