Category Archives: COVID-19 INFO

C. diff. Spores and More Live Broadcast Enters Season VI

Welcome to Season VI on 

C. diff. Spores and More

Live Broadcast, sponsored

by Clorox Healthcare.

 

With over 260 archived episodes ~ Listen At Your Leisure


It’s a new year with an entirely new line up of guests eager to share their C. difficile research, infection prevention methods, clinical trials in progress, the updates in the C. diff. community, and much more.

 

 

 

 

In March the post-Patient and Family Symposium presentations will broadcast, in the event you weren’t able to attend the live-online event hosted on January 15th. The first annual Patient and Family Symposium was sponsored by Seres Therapeutics

Do you have a specific topic of interest or would like to learn more about a specific product or procedure?  Send an email to info@cdifffoundation.org and share your suggestions and interests.

“None of us can do this alone ~ All of us can do this together.”

Join us every Tuesday at 1:00 p.m. EST for the Live Broadcast  www.cdiffradio.com

 

Study Shows the Burden of CDI During the COVID-19 Pandemic: A Retrospective Case-Control Study in Italian Hospitals (CloVid)

Clovid

** To View the Article In Its Entirety Please Access the .pdf Referenced Above. Thank you.

Article
The Burden of Clostridioides Difficile Infection
during the COVID-19 Pandemic: A Retrospective
Case-Control Study in Italian Hospitals (CloVid)

Guido Granata 1,* , Alessandro Bartoloni 2, , Mauro Codeluppi 3, , Ilaria Contadini 4, Francesco Criistini 4, , Massimo Fantoni 5, , Alice Ferraresi 6, , Chiara Fornabaio 6, , Sara Grasselli 3,
Filippo Lagi 2, , Luca Masucci 5,, Massimo Puoti 7, , Alessandro Raimondi 7, , Eleonora Taddei 8
,Filippo Fabio Trapani 9, , Pierluigi Viale 9, , Stuart Johnson 10, Nicola Petrosillo 1, and on behalf of the CloVid Study Group †

1 Clinical and Research Department for Infectious Diseases, Severe and Immunedepression-Associated
Infections Unit, National Institute for Infectious Diseases L. Spallanzani IRCCS, 00149 Rome, Italy;  nicola.petrosillo@inmi.it
2 Department of Infectious Diseases, Careggi Hospital, University of Florence, 50121 Florence, Italy;alessandro.bartoloni@unifi.it (A.B.); filippo.lagi@unifi.it (F.L.)
3Infectious Diseases Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
m.codeluppi@ausl.pc.it (M.C.); s.grasselli@ausl.pc.it (S.G.)
4Infectious Diseases Unit, Rimini-Forlì-Cesena Hospitals, 48121 Rimini, Italy;
ilaria.contadini@auslromagna.it (I.C.); francesco.cristini@auslromagna.it (F.C.)
5 Dipartimento di Scienze di Laboratorio e Infettivologiche —Fondazione Policlinico A. Gemelli IRCCS,Via della Pineta Sacchetti, 00168 Rome, Italy; massimo.fantoni@policlinicogemelli.it (M.F.);
luca.masucci@policlinicogemelli.it (L.M.)
6Infectious Diseases Unit, ASST Cremona, 26100 Cremona, Italy; alice.ferraresi@asst-cremona.it (A.F.);c.fornabaio@asst-cremona.it (C.F.)
7Infectious Diseases Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy;
massimo.puoti@ospedaleniguarda.it (M.P.); alessandro.raimondi@ospedaleniguarda.it (A.R.)
8 Dipartimento di Sicurezza e Bioetica—Sezione di Malattie Infettive—Fondazione Policlinico A.
Gemelli IRCCS, Via della Pineta Sacchetti, 00168 Rome, Italy; eleonora.taddei@policlinicogemelli.it
9 Department of Medical and Surgical Sciences, Infectious Diseases Unit,
Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; filippofabio.trapani@aosp.bo.it (F.F.T.);
pierluigi.viale@unibo.it (P.V.)
10 Research Service, Hines VA Hospital and Infectious Disease Section, Loyola University Medical Center,
Maywood, IL 60153, USA; stuart.johnson2@va.gov
* Correspondence: guido.granata@inmi.it; Tel.: +39-065-517-0241
† CloVid (Clostridioides difficile infection during the COVID-19) Study Group.
Received: 28 October 2020; Accepted: 25 November 2020; Published: 27 November 2020

Abstract: Data on the burden of Clostridioides difficile infection (CDI) in Coronavirus Disease
2019 (COVID-19) patients are scant. We conducted an observational, retrospective, multicenter,
1:3 case (COVID-19 patients with CDI)-control (COVID-19 patients without CDI) study in Italy
to assess incidence and outcomes, and to identify risk factors for CDI in COVID-19 patients.
From February through July 2020, 8402 COVID-19 patients were admitted to eight Italian hospitals;

38 CDI cases were identified, including 32 hospital-onset-CDI (HO-CDI) and 6 community-onset,
healthcare-associated-CDI (CO-HCA-CDI). HO-CDI incidence was 4.4 × 10,000 patient-days.
The percentage of cases recovering without complications at discharge (i.e., pressure ulcers, chronic heart decompensation) was lower than among controls (p = 0.01); in-hospital stays were longer among cases, 35.0 versus 19.4 days (p = 0.0007). The presence of a previous hospitalization (p = 0.001), previous
steroid administration (p = 0.008) and the administration of antibiotics during the stay (p = 0.004) were risk factors associated with CDI. In conclusions, CDI complicates COVID-19, mainly in patients with J. Clin. Med. 2020, 9, 3855; doi:10.3390/jcm9123855 http://www.mdpi.com/journal/jcm J. Clin. Med. 2020, 9, 3855 2 of 11 co-morbidities and previous healthcare exposures. Its association with antibiotic usage and hospital-acquired bacterial infections should lead to strengthen antimicrobial stewardship programmes and infection prevention and control activities

1. Introduction
Since 31 December 2019, when the World Health Organization (WHO) was informed of an
outbreak of a respiratory disease affecting the city of Wuhan, the world has been shaken by the
most profound health crisis of the last several decades [1,2]. Coronavirus Disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread rapidly worldwide with the consequence of causing a serious health threat to humans on every continent.  At present, more than thirty million people are known to have been infected, which has placed a great burden on health care systems and heightened anxiety and psychological stress of medical staff [3].

The lack of high-level evidence, inherent to the novelty and rapid spread of COVID-19, has led to
the adoption of heterogeneous therapeutic management approaches, often without a clear distinction between evidence-based data and expert opinion in informing treatment choices. The high number shortage of beds, especially in critical areas, and the need for healthcare worker protection have challenged compliance with infection control and antibiotic stewardship programs in most health-care facilities facing this emergent threat of COVID-19 [4]. During the pandemic many health-care facilities gave priority to the protection of their healthcare workers from COVID-19, reducing attention to the prevention of other bacterial infections transmitted by interpersonal contact. Moreover, most of the early recommendations for the management of COVID-19 patients considered the use of empirical antibiotic treatment, resulting in large usage of antimicrobials in COVID-19 patients. Up to 94% of COVID-19 patients have been reported to receive empirical antibiotic therapy during their hospital stay [4–9]. Bacterial superinfections have been described in the course of COVID-19 disease
and early reports of Clostridioides difficile infection (CDI) co-infection have been published [10,11]. CDI is commonly associated with the use of broad-spectrum antibiotics, absence of antimicrobial stewardship, inadequate infection control, and hospital overcrowding [12]. Currently, we do not have a clear picture of the burden of CDI in COVID-19 patients and there is a lack of data on the prevalence and clinical manifestations of CDI in COVID-19 patients.
The aim of this study was to assess the incidence of CDI in hospitalized COVID-19 patients,
to describe the clinical characteristics and outcomes of COVID-19 patients with CDI and to identify risk factors for the onset of CDI in COVID-19 patients.

2. Materials and Methods
We conducted an observational, retrospective, national multicenter, case-control study with 1:3
matching to assess the incidence, clinical characteristics, and outcomes of COVID-19 patients with CDI. In addition, we evaluated risk factors associated with the occurrence of CDI in COVID-19 patients. The study was performed in 8 acute-care Italian hospitals admitting COVID-19 patients, between February 2020 and July 2020 (Figure 1 and Table S1). All the hospitals have an Infectious Disease Unit. The study was approved by the Ethics Committees of the participant hospitals.J. Clin. Med. 2020, 9, 3855 3 of 11 J. Clin. Med. 2020, 9, x FOR PEER REVIEW 3 of 11

Figure 1. Geographical distribution of participating centers. The detailed list of the eight participating centers is available as supplementary material (Table S1).
2.1. Study Design Hospitalized adult (>18 years old) patients with COVID-19 and CDI were identified from the databases of the participant centers. Cases were defined as COVID-19 patients with CDI; controls were COVID-19 patients without CDI. Cases were matched 1:3 with controls. Demographic, epidemiological, and clinical data (COVID-19 onset and clinical characteristics, medications given for COVID-19, antimicrobial treatments before and after the diagnosis of COVID-19, laboratory data, CDI onset and characteristic, and patient’s outcome) were collected in clinical record forms (CRF)

(Table S2).
Controls were matched to cases according to the following criteria:
1. Same gender
2. Hospitalization in the same hospital and in the same unit
3. Same date of hospital admission ± 7 days
4. Same age ± 3 years
All cases and controls were followed up to 30 days from their hospital discharge to assess for
new onset of diarrhea, recurrence of CDI, and mortality at 30 days from the hospital discharge.
The definitions of CDI, microbiological evidence of C. difficile, CDI recurrence, mild CDI, severe
CDI and complicated CDI and the definitions of the clinical syndromes associated with COVID-19
adopted in the study are described in Table S3.

2.2. Data Analysis
The incidence of CDI among all COVID-19 patients admitted to the participating hospitals was
calculated using as the numerator the number of CDI cases and as the denominator the number of days of hospitalization of the COVID-19 patients (× 10,000). The characteristics of the study population and Figure 1. Geographical distribution of participating centers. The detailed list of the eight participating centers is available as supplementary material (Table S1).

2.1. Study Design
Hospitalized adult (>18 years old) patients with COVID-19 and CDI were identified from the
databases of the participant centers. Cases were defined as COVID-19 patients with CDI; controls were COVID-19 patients without CDI. Cases were matched 1:3 with controls. Demographic, epidemiological, and clinical data (COVID-19 onset and clinical characteristics, medications given for COVID-19, antimicrobial treatments before and after the diagnosis of COVID-19, laboratory data, CDI onset and characteristic, and patient’s outcome) were collected in clinical record forms (CRF) (Table S2).

Controls were matched to cases according to the following criteria:
1. Same gender
2. Hospitalization in the same hospital and in the same unit
3. Same date of hospital admission ±7 days
4. Same age ±3 years
All cases and controls were followed up to 30 days from their hospital discharge to assess for new onset of diarrhea, recurrence of CDI, and mortality at 30 days from the hospital discharge.
The definitions of CDI, microbiological evidence of C. difficile, CDI recurrence, mild CDI, severe
CDI and complicated CDI and the definitions of the clinical syndromes associated with COVID-19
adopted in the study are described in Table S3.

2.2. Data Analysis
The incidence of CDI among all COVID-19 patients admitted to the participating hospitals was
calculated using as the numerator the number of CDI cases and as the denominator the number of days of hospitalization of the COVID-19 patients (× 10,000). The characteristics of the study population and the patient outcome were evaluated by means of descriptive statistics. The potential correlations J. Clin. Med. 2020, 9, 3855 4 of 11
between CDI and clinical variables of COVID-19 (infection onset, severity) and laboratory findings were analyzed by univariate and multivariate analysis. To identify risk factors for onset of CDI in COVID-19 patients and any determinants of delayed diagnosis of CDI, the characteristics of the CDI group were compared to the control group by means of univariate and multivariate analysis.

2.3. Statistical Analysis
Quantitative variables were tested for normal distribution and compared by means of a paired
t-test. Qualitative differences between groups were assessed by use of Fisher’s exact test. The precision of odd ratio (OR) was determined by calculating a 95% confidence interval (CI). A p value less than 0.05 was considered statistically significant. Variables from the univariate analysis were considered for inclusion in multivariate logistic regression analysis if p-value was less than 0.05. Backward stepwise logistic regression was performed, and the model that was considered biologically plausible and had the lowest −2 log-likelihood ratio was chosen as the final model. Statistical analysis was performed using the software program IBM SPSS version 24.

3. Results
3.1. CDI Incidence among COVID-19 Patients
Overall, during the study period, a total of 40,315 patients were admitted to the eight participant hospitals; of these, 8402 were COVID-19 patients. The mean hospital stay for COVID-19 patients was 13.8 days (range 1–59 days). Thirty-eight CDI cases were identified, including 32 hospital-onset CDI (HO-CDI) and 6 community-onset, healthcare-associated CDI (CO-HCA-CDI) cases. Therefore, during the study period, 32 COVID-19 patients developed HO-CDI, corresponding to an HO-CDI prevalence of 0.38%, and an HO-CDI incidence of 4.4 × 10,000 patient days ranging in the hospitals from 0.7 to 12.3 × 10,000 patient days (Table S4).
3.2. Clinical Features of Clostridioides Difficile Infection in COVID-19 Patients
The demographic and epidemiological data, the comorbidities, the clinical characteristics, and
the outcome of the 38 COVID-19 patients with CDI and of the 114 controls included in the study are described in Table 1. The mean laboratory findings at the admission of the 38 COVID-19 patients with CDI and of the 114 controls are shown in Table 2. The CDI characteristics, severity, management, and follow-up of the 38 COVID-19 patients with CDI included in the study are shown in Table 3.

Table 1. Demographic and epidemiological data, comorbidities, clinical characteristics of the Coronavirus Disease 2019 (COVID-19), and outcome of the 38 COVID-19 patients with CDI and of the 114 COVID-19 controls included in the study. CCI: Charlson Co-morbidity Index. LTHCF: long-term health care facility. ARDS: Acute Respiratory Distress Syndrome. LMWH: Low Molecular Weight

………TO VIEW THE ENTIRE ARTICLE/GRAPHS/TABLES,  PLEASE ACCESS THE .pdf REFERENCED AT THE TOP OF THE PAGE.

THANK YOU!

For Patients Confirmed With COVID-19 – U.S. Food and Drug Administration (FDA) Has Issued an Emergency Use Authorization (EUA) for the Elecsys® IL-6 Test

Roche’s Elecsys IL-6 test receives FDA Emergency Use Authorization to help in identifying patients at high risk of severe inflammatory response

  • FDA EUA1 now makes IL-6 testing accessible to patients in the United States to assist in identifying severe inflammatory response in patients with confirmed COVID-19 and is also available in markets accepting the CE-mark2
  • Interleukin 6 (IL-6) is an early indicator for acute inflammation to aid in the management of critically ill patients
  • This test is available on Roche’s cobas e analysers which are widely available around the world

 
Roche announced on June 4, 2020 that the U.S. Food and Drug Administration (FDA) has issued an Emergency Use Authorization (EUA) for the Elecsys® IL-6 test. This test measures levels of the biomarker interleukin 6 (IL-6) and can be used to help identify patients with confirmed COVID-19 disease who could be at high risk of intubation with mechanical ventilation.

The test can support physicians, in combination with other examinations and vital signs, to decide early on if a patient with confirmed COVID-19 illness requires mechanical ventilation.“The FDA EUA approval of Elecsys IL-6 is another step in our commitment to deliver fast and reliable diagnostic tests to help fight the coronavirus pandemic,” said Thomas Schinecker, CEO Roche Diagnostics. “In the current situation, time is specifically critical. The test could help physicians in the quick identification of severe inflammatory response in patients infected with the SARS CoV-2 virus.”

“In the current pandemic, Roche’s Elecsys IL-6 test was helpful as an early indicator for acute inflammation and in the management of critically ill patients,” said Tobias Herold, MD from the Emergency Department, University Hospital, LMU University Munich, Germany. “Elevated IL-6 values help us to identify patients with a high risk of upcoming respiratory failure.

Hospitals and reference laboratories can run the Elecsys IL-6 test on Roche’s cobas e® analysers which are widely available around the world. These fully-automated systems can provide test results in approximately 18 minutes, with a test throughput of up to 300 tests/hour, depending on the analyser.

About Elecsys IL-6
The IL-6 immunoassay is an in vitro diagnostic test for the quantitative determination of IL-6 (interleukin-6) in human serum or plasma. This assay is used in countries accepting CE-mark to aid in the management of critically ill patients, as an early indicator for acute inflammation. Under the Emergency Use Authorization in the US, this assay can be used to assist in identifying severe inflammatory response in patients with confirmed COVID‑19 illness to aid in determining the risk of intubation with mechanical ventilation, in conjunction with clinical findings and the results of other laboratory testing. IL-6 is released by immune cells, once they are activated by virus, bacteria or other immune cells. IL-6 acts like a messenger to activate other immune cells to fight the infection. Because IL-6 is released so early during a severe infection, it helps physicians to identify severely ill COVID-19 patients as early as possible. Hospitals and reference laboratories can run the test on Roche’s cobas e analysers which are widely available around the world. These fully-automated systems can provide test results in approximately 18 minutes, with a test throughput of up to 300 tests/hour, depending on the analyser.

About Roche’s response to the COVID-19 pandemic
The COVID-19 pandemic continues to evolve globally with varying developments from country to country and we are partnering with healthcare providers, laboratories, authorities and organisations to help make sure that patients receive the tests, treatment and care they need.

Reliable, high-quality testing is essential to help healthcare systems overcome this pandemic. On 13 March we received FDA Emergency Use Authorization for a high-volume molecular test to detect SARS-CoV-2, the virus that causes COVID-19, which is also available in countries accepting the CE Mark. On 3 May, Roche announced that its COVID-19 antibody test, aimed at detecting the presence of antibodies in the blood, also received FDA Emergency Use Authorization and is available in markets accepting the CE mark. Our existing diagnostics portfolio for critical care has also been playing a significant role in supporting patient management during the COVID-19 crisis, with our blood gas and sepsis products being used to monitor patients in the acute setting. Roche is working closely with governments and health authorities around the world, and has significantly increased production to help ensure availability of tests globally.

While there are currently no approved medicines for the treatment of patients with COVID-19, we are actively involved in understanding the potential of our existing portfolio and are researching options for the future. On 19 March, we announced the initiation of COVACTA – a global Phase III randomised, double-blind, placebo-controlled clinical trial to evaluate the safety and efficacy of intravenous Actemra©/RoActemra© (tocilizumab) plus standard of care in hospitalised adult patients with severe COVID-19 pneumonia compared to placebo plus standard of care. Roche has also initiated an internal early research programme focused on the development of medicines for COVID-19 and is evaluating a large number of potential collaborations.

In these exceptional times, Roche stands together with governments, healthcare providers and all those working to overcome the pandemic.

About Roche
Roche is a global pioneer in pharmaceuticals and diagnostics focused on advancing science to improve people’s lives. The combined strengths of pharmaceuticals and diagnostics under one roof have made Roche the leader in personalised healthcare – a strategy that aims to fit the right treatment to each patient in the best way possible.

Roche is the world’s largest biotech company, with truly differentiated medicines in oncology, immunology, infectious diseases, ophthalmology and diseases of the central nervous system. Roche is also the world leader in in vitro diagnostics and tissue-based cancer diagnostics, and a frontrunner in diabetes management.

Founded in 1896, Roche continues to search for better ways to prevent, diagnose and treat diseases and make a sustainable contribution to society. The company also aims to improve patient access to medical innovations by working with all relevant stakeholders. More than thirty medicines developed by Roche are included in the World Health Organization Model Lists of Essential Medicines, among them life-saving antibiotics, antimalarials and cancer medicines. Moreover, for the eleventh consecutive year, Roche has been recognised as one of the most sustainable companies in the Pharmaceuticals Industry by the Dow Jones Sustainability Indices (DJSI).

The Roche Group, headquartered in Basel, Switzerland, is active in over 100 countries and in 2019 employed about 98,000 people worldwide. In 2019, Roche invested CHF 11.7 billion in R&D and posted sales of CHF 61.5 billion. Genentech, in the United States, is a wholly owned member of the Roche Group. Roche is the majority shareholder in Chugai Pharmaceutical, Japan. For more information, please visit www.roche.com.

All trademarks used or mentioned in this release are protected by law.

References
[1] The Emergency Use Authorization (EUA) authority allows FDA to help strengthen the nation’s public health protections against CBRN threats by facilitating the availability and use of medical countermeasures needed during public health emergencies https://www.fda.gov/home
[2] CE-IVD marking is granted through completion of a comprehensive technical validation and self declaration under the European Directive for In Vitro Diagnostic Medical Devices.