Clostridium difficile (C.diff.) Infection (CDI) Rates In the United States and Across the Globe Have Increased In the Last Decade, Along With Associated Morbidity and Mortality

ahrq-logo-pic

 

 

Early Diagnosis, Prevention, and Treatment of Clostridium difficile: Update

Prepared for:
Agency for Healthcare Research and Quality
U.S. Department of Health and Human Services
5600 Fishers Lane
Rockville, MD 20857
March 2016

 

Clostridium difficile is a gram-positive, anaerobic bacterium generally associated through ingestion. Various strains of the bacteria may produce disease generating toxins
and TedA and TedB, as well as the lesser understood binary toxin.

Our use of the term indicates this review’s focus is the presence of clinical disease rather than asymptomatic carriage of C. difficile CDI symptoms can range from mild diarrhea to severe cases including pseudomembranous colitis and toxic megacolon and death.

Estimated U.S. health care associated CDI incidence in 2011 was 95.3 per 100,000, or about
293,000 cases nationally. Incidence is higher among females, whites, and persons 65 years of
age or older. (1)

About one third to one half of health-care onset CDI cases begin in long term care,thus residents in these facilities are at high risk.  Incidence rates may increase by four or five-fold during outbreaks.

Community associated CDI, where CDI occurs outside the institutional setting,
is also on the rise, though still generally lower than institution associated rates and may be in part due to increased surveillance. Estimated community associated CDI was 51.9 per 100,000, or   159,700 cases in 2011.  (1)

Community-associated CDI complicates measuring the effectiveness of  prevention within an institutional setting. 3  Additionally, the pathogenesis of CDI is complex and not
completely understood, and onset may occur as late as several months after hospitalization or antibiotic use

The estimated mortality rate for health -care associated CDI ranged from 2.4 to 8.9 deaths per

100,000 population in 2011.(1) For individuals ≥65 years of age, the mortality rate
was 55.1 deaths per 100,000; (1)

CDI was the 17th leading cause of death in this age group (4)
Hypervirulent C. difficile  strains have emerged since 2000 . These affect a wider population

that includes children, pregnant women, and other healthy
adults, many of whom lack standard risk profiles such as previous hospitalization or antibiotic use.(5)

The hypervirulent strains  account for 51 percent of CDI, compared to only 17 percent
of historical isolates. (6)

Time from symptom development to septic shock may be reduced in the hypervirulent strains, making quick diagnosis and proactive treatment regimens critical for positive outcomes.

To read more on  TREATMENT, PREVENTION, KEY QUESTIONS ——

https://www.effectivehealthcare.ahrq.gov/ehc/products/604/2208/c-difficile-update-report-160329.pdf

Early Diagnosis, Prevention, and Treatment of Clostridium difficile: Update

Prepared for:
Agency for Healthcare Research and Quality
U.S. Department of Health and Human Services
5600 Fishers Lane
Rockville, MD 20857
March 2016

 

Sources:

1Appendix J. References for Appendixes
1.Alcala L, Reigadas E, Marin M, et al.
Comparison of GenomEra C. difficile and Xpert
C. difficile as confirmatory tests in a multistep
algorithm for diagnosis of Clostridium difficile
infection.
J Clin Microbiol 2015 Jan;53(1):332
5. PMID: 25392360.
2.Barkin JA, Nandi N, Miller N, et al.
Super iority
of the DNA amplification assay for the
diagnosis of C. difficile infection: a clinical
comparison of fecal tests.
Dig Dis Sci 2012Oct;57(10):2592-
9. PMID: 22576711.
3.Bruins MJ, Verbeek E, Wallinga JA, et al.
Evaluation of three enzyme immunoassay
s and a loo mediated isothermal amplification test
for the laboratory diagnosis of Clostridium
difficile infection. Eur J Clin Microbiol Infect
Dis 2012 Nov;31(11):3035 9. PMID:
22706512.
4.Buchan BW, Mackey TL, Daly JA, et al.
Multicenter clinical evalu
ation of the portrait
toxigenic C. difficile assay for detection of
toxigenic Clostridium difficile strains in clinical
stool specimens. J Clin Microbiol 2012
Dec;50(12):3932-
6. PMID: 23015667.
5.Calderaro A, Buttrini M, Martinelli M, et al.
Comparative analysis of different methods to
detect Clostridium difficile infection. New
Microbiol 2013 Jan;36(1):57-
63. PMID:
23435816.
6.Carroll KC, Buchan BW, Tan S, et al.
Multicenter evaluation of the Verigene
Clostridium difficile nucleic acid assay.
J ClinMicrobiol 2013 Dec;51(12):4120-
5. PMID:24088862