Tag Archives: University of Oxford

Researchers Suggest a Portion Of C. diff. Cases In Europe Involve Infections Associated With Other Sources Outside of Healthcare-Associated Infections

As part of a multicenter study, investigators from the University of Oxford, the University of Leeds, Astellas Pharma Europe, and elsewhere used a combination of ribotyping, sequencing, phylogenetics, and geographic analyses to retrace the genetic diversity and potential sources of C. difficile isolates involved in infections in European hospitals.

Recent research suggests a proportion of Clostridium difficile cases in Europe involve not only hospital-acquired infections but also infections associated with other sources, such as food.

As stated in the article:

https://www.genomeweb.com/sequencing/clostridium-difficile-genetic-patterns-europe-point-possible-infection-sources-beyond?utm_source=Sailthru&utm_medium=email&utm_campaign=GWDN%20Mon%20PM%202017-04-24&utm_term=GW%20Daily%20News%20Bulletin

David Eyre, a clinical lecturer at the University of Oxford, was slated to present the work at the European Congress of Clinical Microbiology and Infectious Diseases annual 2017 meeting in Vienna this past weekend. The study was funded by Astellas Pharma’s Europe, Middle East, and Africa (EMEA) program.

“We don’t know much about how C. difficile might be spread in the food chain, but this research suggests it may be very widespread,” Eyre said in a statement. “If that turns out to be the case, then we need to focus on some new preventative strategies such as vaccination in humans once this is possible, or we might need to look at our use of animal fertilizers on crops.”

“This study doesn’t give us any definitive answers,” he explained, “but it does suggest other factors [than hospital infections] are at play in the spread of C. difficile and more research is urgently needed to pin them down.”

####

Some of the strains clustered by locale, consistent with spread from one individual to the next, for example in a healthcare setting. But more unexpectedly, the team also saw strains smattered across seemingly unconnected sites. And because at least one of those strains had previously been linked to pig farming, the researchers speculated that some infections may have been transmitted through food sources.

 

To read the article in its entirety click on the following link:

https://www.genomeweb.com/sequencing/clostridium-difficile-genetic-patterns-europe-point-possible-infection-sources-beyond?utm_source=Sailthru&utm_medium=email&utm_campaign=GWDN%20Mon%20PM%202017-04-24&utm_term=GW%20Daily%20News%20Bulletin

Antibiotics; The Main Source Of C. diff. Epidemic Found Through Most Recent UK Study

laboratorybeakers3

 

As published by

University of Leeds  UK

 

Restricting the use of a common antibiotic was more important than a high profile ‘deep clean’ of hospitals in massively reducing UK antibiotic resistant Clostridium difficile, a major study found.

“These findings are of international importance because other regions such as North America, where fluoroquinolone prescribing remains unrestricted, still suffer from epidemic numbers of C. diff infections.”

http://www.leeds.ac.uk/news/article/3978/overuse_of_antibiotics_the_main_cause_of_c_diff_epidemic

The study concluded that overuse of antibiotics like ciprofloxacin led to the outbreak of severe diarrhea caused by Clostridium difficile (C.diff) that hit headlines from 2006 onward. The outbreak was stopped by substantially reducing use of ciprofloxacin and related antibiotics.

Inappropriate use and widespread over prescribing of fluoroquinolone antibiotics such as ciprofloxacin in fact allowed C. diff bugs that were resistant to the drug to thrive, because non-resistant bugs in the gut were killed off by the antibiotic, leaving the way clear for rapid growth of resistant C. diff.

Concerns about hospital ‘superbugs’ which had become resistant to common antibiotics resulted in the announcement of a program of “deep cleaning” and other infection control measures in the NHS in 2007.

The study, by the University of Leeds, University of Oxford and Public Health England published today in The Lancet Infectious Diseases, found that cases of C. diff fell only when fluoroquinolone use was restricted and used in a more targeted way as one part of many efforts to control the outbreak.

The restriction of fluoroquinolones resulted in the disappearance in the vast majority of cases of the infections caused by the antibiotic-resistant C. diff, leading to around an 80% fall in the number of these infections in the UK (in Oxfordshire approximately 67% of C. diff bugs were antibiotic-resistant in September 2006, compared to only approximately 3% in February 2013).

In contrast, the smaller number of cases caused by C. diff bugs that were not resistant to fluoroquinolone antibiotics stayed the same. Incidence of these non-resistant bugs did not increase due to patients being given the antibiotic, and so were not affected when it was restricted.

At the same time, the number of bugs that were transmitted between people in hospitals did not change. This was despite the implementation of comprehensive infection prevention and control measures, like better hand-washing and hospital cleaning in this case.

The study’s authors therefore conclude that ensuring antibiotics are used appropriately is the most important way to control the C. diff superbug.

The authors note that it is important that good hand hygiene and infection control continues to be practiced to control the spread of other infections.

The study analyzed data on the numbers of C. diff infections and amounts of antibiotics used in hospitals and by GPs in the UK.

More than 4,000 C. diff bugs also underwent genetic analysis using a technique called whole genome sequencing, to work out which antibiotics each bug was resistant to.

Co-author Derrick Crook, Professor of Microbiology, University of Oxford said: “Alarming increases in UK hospital infections and fatalities caused by C. diff made headline news during the mid-2000s and led to accusations of serious failings in infection control.

“Emergency measures such as ‘deep cleaning’ and careful antibiotic prescribing were introduced and numbers of C. diff infections gradually fell by 80% but no-one was sure precisely why.

“Our study shows that the C. diff epidemic was an unintended consequence of intensive use of an antibiotic class, fluoroquinolones, and control was achieved by specifically reducing use of this antibiotic class, because only the C. diff bugs that were resistant to fluoroquinolones went away.

“Reducing the type of antibiotics like ciprofloxacin was, therefore, the best way of stopping this national epidemic of C. diff and routine, expensive deep cleaning was unnecessary. However it is important that good hand hygiene continues to be practiced to control the spread of other infections.

“These findings are of international importance because other regions such as North America, where fluoroquinolone prescribing remains unrestricted, still suffer from epidemic numbers of C. diff infections.”

Co-author Prof Mark Wilcox, Professor of Microbiology, University of Leeds, said: “Our results mean that we now understand much more about what really drove the UK epidemic of C. diff infection in the mid-2000s.

“Crucially, part of the reason why some C. diff strains cause so many infections is because they find a way to exploit modern medical practice.

“Similar C. diff bugs that affected the UK have spread around the world, and so it is plausible that targeted antibiotic control could help achieve large reductions in C. diff infections in other countries.”

The funding for the study came from the UK Clinical Research Collaboration, (Medical Research Council, Wellcome Trust, National Institute for Health Research); NIHR Oxford Biomedical Research Centre; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antibiotic Resistance, University of Oxford in partnership with Leeds University and Public Health England; NIHR Health Protection Research Unit in Modelling Methodology, Imperial College London in partnership with Public Health England; and the Health Innovation Challenge Fund.

Further information:  Source:

Contact Sophie Freeman in the University of Leeds

press office on 0113 343 8059 or email s.j.freeman@leeds.ac.uk