Tag Archives: superbugs

United Nations Releases Critical Warning On Growing Concerns of Drug-Resistant Infections

With more and more common medications losing their ability to fight dangerous infections, and few new drugs in the pipeline, the world is facing an imminent crisis that could lead to millions of deaths, a surge in global poverty and an even wider gap between rich and poor countries, the United Nations warned in a report on April 29th – 2019.

Drug-resistant infections already claim 700,000 lives a year, including 230,000 deaths from drug-resistant tuberculosis, the report said. The rampant overuse of antibiotics and anti-fungal medicines in humans, livestock and agriculture is accelerating a crisis that is poorly understood by the public and largely ignored by world leaders. Without concerted action, a United Nations panel said, resistant infections could kill 10 million people annually by 2050 and trigger an economic slowdown to rival the global financial crisis of 2008.

The problem threatens people around the world. During the next 30 years, the United Nations experts said, 2.4 million people in Europe, North America and Australia could die from drug-resistant infections, making routine hospital procedures like knee-replacement surgery and childbirth far riskier than they are today.

“This is a silent tsunami,” said Dr. Haileyesus Getahun, director of the U.N. Interagency Coordination Group on Antimicrobial Resistance, which spent two years working on the report. “We are not seeing the political momentum we’ve seen in other public health emergencies, but if we don’t act now, antimicrobial resistance will have a disastrous impact within a generation.”

 

To read article in its entirety please click on the following link to be redirected:

https://www.nytimes.com/2019/04/29/health/un-drug-resistance-antibiotics

Breakout Labs Has Invested in SciBac, a Company Targeting the Growing Problem of Antibiotic Resistance

It’s not surprising that Breakout Labs, the Thiel Foundation‘s seed-stage fund that aims to propel radical science to improve human health, has invested in SciBac, a company targeting the growing problem of antibiotic resistance. Among health risks that threaten mankind, the one that may prove most deadly is the rise of superbugs — drug-resistant bacteria that can make simple surgeries and medical treatments like chemotherapy impossible.

Why Peter Thiel is backing a tiny start-up waging war against the global superbug crisis

  • 700,000 people worldwide die each year from antibiotic-resistant infections, and numbers are increasing.
  • Antimicrobial resistance is projected to kill more people than cancer by 2050, according to the World Health Organization.
  • Many big pharmaceutical companies are exiting the antibiotic drug development field due to low margins.
  • Start-ups like SciBac, which made the 2018 CNBC Upstart 100 list, are developing alternative solutions.

Over the years ever more powerful strains have spread around the world. It’s a crisis that has even garnered the attention of world leaders at the United Nations. That’s because the urgency is clear: 700,000 people die each year worldwide from antibiotic-resistant infections, and that number is increasing by the day. In the United States alone at least 2 million people become infected with antibiotic-resistant bacteria each year, according to the Centers for Disease Control and Prevention, and 23,000 die each year as a result of those infections.

The future trend is alarming. According to the World Health Organization, Hemai Parthasarathyis projected to kill more people than cancer by 2050, which would reduce global economic output by between 2 percent and 3.5 percent — a staggering $100 trillion cut in GDP globally — and severely cripple modern medical and surgical advances.

A $40 billion superbug market Big Pharma is neglecting

It’s no wonder many scientists call antimicrobial resistance “a slow-motion tsunami.” Yet lack of drug development and discovery by Big Pharma has exacerbated the problem. “Within the last two years, five large pharmaceutical and many biotech companies have exited the field due to the scientific, regulatory and economic challenges posed by antibiotic discovery and development,” said Thomas Cueni, chairman of the AMR Industry Alliance, a coalition of 100 companies and pharmaceutical associations set up to curb antimicrobial resistance. Among the pharmaceutical giants to exit this research field: Novartis, AstraZeneca, Sanofi and Allergan.

The void has spurred many nimble biotech start-ups to look for solutions in this new $40 billion superbug market. One is SciBac, a biotherapeutics company named to the 2018 CNBC Upstart 100 list. The Silicon Valley start-up shifts the paradigm on how to tackle superbugs. It is developing a microbe pill to boost the body’s microbiome in the gut, lungs and skin to kill bacteria that cause antibiotic-resistant disease. Its first product treats and prevents Clostridium difficile infection (CDI), commonly known as deadly diarrhea and our nation’s top antibiotic-resistant threat. It is also working on developing a drug to treat and prevent chronic Pseudomonas infections in the lungs of cystic fibrosis patients.

“Our patented platform technology has applications to treat other infections,” said SciBac CEO Jeanette Mucha. “It allows us to mate different species of microbes into a single hybrid that can target specific diseases through multiple modes of action that kill the bacteria and toxins in the body. At the same time, the technology bolsters the microbiome for fast recovery.”

SciBac CEO, Jeanette Mucha is on a quest to develop an antibiotic alternative.

According to Hemai Parthasarathy, Ph.D., scientific director of the Thiel Foundation’s Breakout Labs, “It’s clear we are running out of an arsenal to attack the superbug crisis, and the world needs new approaches.”

To help SciBac’s team move their technology out of the lab, Breakout has taken a board role to help with business strategy and will help introduce the founders to venture capitalists and potential business partners in the months ahead.

To date, the three-year-old upstart has raised $1.45 million in equity financing and a $3.7 million grant from CARB-X, a nonprofit public-private partnership funded by the U.S. government, Wellcome Trust, the NIH, Bill and Melinda Gates Foundation and the U.K government, that invests in antibacterial research worldwide. Its goal: to fast-track the development of a pipeline of new antibiotics, vaccines and other products to fight the war on superbugs.

“SciBac is essentially creating a new drug that is an antibiotic alternative,” said Kevin Outterson, executive director of CARB-X. “The microbiome is providing exciting new approaches to the prevention and treatment of life-threatening infections of all kinds. It’s a promising new scientific approach.”

SciBac’s answer to the superbug threat has caught the attention of investors.

As Outterson explains, most of the innovation in this field is coming from tiny pre-clinical trial companies like SciBac. That’s because many Big Pharma companies feel the margins aren’t worth the high R&D costs, which can run into the billions of dollars. “As soon as you make an antibiotic, it is already dying because bacteria are evolving in response to the drug. Eventually, random mutations will make antibiotic resistance come.”

For this reason, drug companies feel antibiotics are undervalued in the marketplace.

To help boost the start-up’s odds of success, CARB-X will provide SciBac with consultants and experts in R&D, toxicity and regulation that can help them navigate how to get their science from the lab to clinical trials for FDA approval. It has set milestones for the company that it must meet to get financing.

Like many entrepreneurs pursuing breakthrough science, Mucha seems energized by her formidable challenge of kickstarting the development of a new drug.

Mucha said she and co-founders Anthony Cann, a chemical engineer, and Derik Twomey, a cell biologist, stumbled on the idea. They had experience working with a species of bacteria known as clostridium while developing a biofuel for Cobalt Technologies. After that company closed shop, Mucha set up a lab in her garage to experiment with probiotics and see if she could induce gene transfer in bacteria. It worked. Then the entrepreneurs moved into an incubator, Molecular Sciences Institute in Milpitas, California, to set up a lab. Ten months later they applied to Breakout Labs for $350,000 of seed financing, which gave them matching funds to help secure the CARB-X grant. Now the company is in the midst of getting bridge financing to fund clinical trials and manufacturing.

“This drug development will take time,” Mucha said. “It won’t be ready for FDA drug approval until 2025. But we’re seeing a lot of investor interest in this alternative technology.”

 

To review article in its entirety please click on the following link to be redirected:

https://www.cnbc.com/2018/10/09/peter-thiel-backs-a-start-up-fighting-the-global-superbug-crisis.html

 

 

 

6th Graders Receive Up Close and Personal Education with a Light-Pulsing, Disinfecting Robot

Sharing and Educating

Opening eyes of the young with disinfecting

technology being utilized to combat “superbugs.”

 

The only robot in the Verdugo region that zaps away unwanted bacteria and viruses from hospital rooms arrived at USC-Verdugo Hills Hospital two weeks ago.

The Xenex robot emits a pulsating, bright white UV-C light — which is a short, wavelength, ultraviolet light that can save lives. Once surfaces are exposed to the robot’s rays, harmful bacteria and viruses die, greatly reducing the odds patients will be infected with hospital-acquired infections, including those caused by superbugs such as methicillin-resistant Staphylococcus aureus, known as MRSA.

USC-Verdugo Hills Hospital employees joined Xenex employees at Fremont Elementary School, where they showcased the $100,000 machine in teacher Mallory Kane’s sixth-grade classroom, the same place where Keith Hobbs, chief executive of Verdugo Hills Hospital, was a sixth-grader in 1979. “There’s no other place that I would rather be than to come back to my alma mater and share this R2D2, bug-zapping machine with you guys,” Hobbs said.

The Xenex robot pulses UV-C light 67 times per second, and hospital staff take precautions when they operate it because the light can harm their eyes.

“This is not any light bulb in your house,” said Mary Virgallito, director of patient safety for the hospital. “It’s actually filled with a gas called xenon.”

Virgallito said hospital employees manually clean rooms before they activate Xenex. It takes the robot about 15 minutes to clean a patient’s room, and 20 minutes to disinfect an operating room.Hobbs said mothers ask if they can borrow the robot to disinfect their own homes, and Kane suggested it would be helpful in the classroom. Over the past several weeks, many of her students missed school because they were sick.

Jeff Mamalakis, business development manager for Xenex, volunteered to disinfect Kane’s room when school let out. The space would be left with a scent as if lightning had just struck, Virgallito said.  The impromptu high-tech, germ-cleansing session was a dream come true for Kane.

“In sixth grade, the curriculum moves so quickly that even missing one day puts kids so far behind,” Kane said. “Having our classroom disinfected every day would be a dream come true. My kids would be here, everyone would be happy, no one would have to miss school.”

To Read the article in its entirety please click on the following link:

http://finance.yahoo.com/news/uhc-most-xenex-germ-zapping-144500378.html;_ylt=A0LEV18lQNBY2KgA6FZXNyoA;_ylu=X3oDMTEzMXBobHNmBGNvbG8DYmYxBHBvcwMxBHZ0aWQDVUkwMkM0XzEEc2VjA3Nj

The World Health Organization (WHO) Ranks Worlds Most Deadliest “Superbugs” In the World

 

the WHO has ranked world’s most deadly “Superbugs” in the world:

Three bacteria were listed as critical:

  • Acinetobacter baumannii bacteria that are resistant to important antibiotics called carbapenems. These are highly drug resistant bacteria that can cause a range of infections for hospitalized patients, including pneumonia, wound, or blood infections.
  • Pseudomonas aeruginosa, which are resistant to carbapenems. These bacteria can cause skin rashes and ear infectious in healthy people but also severe blood infections and pneumonia when contracted by sick people in the hospital.
  • Enterobacteriaceae that are resistant to both carbepenems and another class of antibiotics, cephalosporins. This family of bacteria live in the human gut and includes bugs such as E. coli and Salmonella.

The list, which was released February 27th, 2017 and enumerates 12 bacterial threats, grouping them into three categories: critical, high, and medium.

“Antibiotic resistance is growing and we are running out of treatment options. If we leave it to market forces alone, the new antibiotics we most urgently need are not going to be developed in time,” said Dr. Marie-Paule Kieny, the WHO’s assistant director-general for health systems and innovation.

The international team of experts who drew up the new list urged researchers and pharmaceutical companies to focus their efforts on a type of bacteria known as Gram negatives.

(The terminology relates to how the bacteria respond to a stain — developed by Hans Christian Gram — used to make them easier to see under a microscope.)

Dr. Nicola Magrini, a scientist with the WHO’s department of innovation, access and use of essential medicines, said pharmaceutical companies have recently spent more efforts trying to find antibiotics for Gram positive bacteria, perhaps because they are easier and less costly to develop.

Gram negative bacteria typically live in the human gut, which means when they cause illness it can be serious bloodstream infections or urinary tract infections.

Gram positive bacteria are generally found outside the body, on the skin or in the nostrils.

Kieny said the 12 bacteria featured on the priority list were chosen based on the level of drug resistance that already exists for each, the numbers of deaths they cause, the frequency with which people become infected with them outside of hospitals, and the burden these infections place on health care systems.

Paradoxically, though, she and colleagues from the WHO could not provide an estimate of the annual number of deaths attributable to antibiotic-resistant infections. The international disease code system does not currently include a code for antibiotic-resistant infections; it is being amended to include one.

Six (6) others were listed as high priority for new antibiotics. That grouping represents bacteria that cause a large number of infections in otherwise healthy people. Included there is the bacteria that causes gonorrhea, for which there are almost no remaining effective treatments.

Three (3)  other bacteria were listed as being of medium priority, because they are becoming increasingly resistant to available drugs. This group includes Streptococcus pneumoniae that is not susceptible to penicillin. This bacterium causes pneumonia, ear and sinus infections, as well as meningitis and blood infections.

The creation of the list was applauded by others working to combat the rise of antibiotic resistance.

“This priority pathogens list, developed with input from across our community, is important to steer research in the race against drug resistant infection — one of the greatest threats to modern health,” said Tim Jinks, head of drug-resistant infections for the British medical charity Wellcome Trust.

“Within a generation, without new antibiotics, deaths from drug-resistant infection could reach 10 million a year. Without new medicines to treat deadly infection, lifesaving treatments like chemotherapy and organ transplant, and routine operations like caesareans and hip replacements, will be potentially fatal.”

FULL LIST:

Priority 1: Critical
1. Acinetobacter baumannii, carbapenem-resistant
2. Pseudomonas aeruginosa, carbapenem-resistant
3. Enterobacteriaceae, carbapenem-resistant, ESBL-producing

Priority 2: High
4. Enterococcus faecium, vancomycin-resistant
5. Staphylococcus aureus, methicillin-resistant, vancomycin-intermediate and resistant
6. Helicobacter pylori, clarithromycin-resistant
7. Campylobacter spp., fluoroquinolone-resistant
8. Salmonellae, fluoroquinolone-resistant
9. Neisseria gonorrhoeae, cephalosporin-resistant, fluoroquinolone-resistant

Priority 3: Medium
10. Streptococcus pneumoniae, penicillin-non-susceptible
11. Haemophilus influenzae, ampicillin-resistant
12. Shigella spp., fluoroquinolone-resistant

 

to read the article in its entirety click on the link below to be redirected:

http://www.businessinsider.com/the-who-has-ranked-the-deadliest-superbugs-in-the-world-2017-2

Antibiotic Resistance IS A Serious Global Health Concern

C.diff. Treatments

A Nevada woman has died from an infection resistant to all available antibiotics in the United States, public health officials report.

According to the Centers for Disease Control and Prevention, the woman’s condition was deemed incurable after being tested against 26 different antibiotics.

Though this isn’t the first case of pan-resistant bacteria in the U.S., at this time it is still uncommon. Still, experts note that antibiotic resistance is a growing health concern globally and call the newly reported case “a wake up call.”

“This is the latest reminder that yes, antibiotic resistance is real,” Dr. James Johnson, a professor specializing in infectious diseases at the University of Minnesota Medical School, told CBS News. “This is not some future, fantasized armageddon threat that maybe will happen after our lifetime. This is now, it’s real, and it’s here.”

According to the report, the woman from Washoe County was in her 70s and had recently returned to America after an extended trip to India. She had been hospitalized there several times before being admitted to an acute care hospital in Nevada in mid-August.

Doctors discovered the woman was infected with carbapenem-resistant Enterobacteriaceae (CRE), which is a family of germs that CDC director Dr. Tom Frieden has called “nightmare bacteria” due to the danger it poses for spreading antibiotic resistance.

The woman had a specific type of CRE, called Klebsiella pneumoniae, which can lead to a number of illnesses, including pneumonia, blood stream infections, and meningitis. In early September, she developed septic shock and died.

The authors of the report say the case highlights the need for doctors and hospitals to ask incoming patients about recent travel and if they have been hospitalized elsewhere.

Other experts say it underscores the need for the medical community, the government and the public to take antibiotic resistance more seriously.

According to the CDC, at least two million people become infected with antibiotic resistant bacteria each year, and at least 23,000 die as a direct result of these infections.

The World Health Organization calls antibiotic resistance “one of the biggest threats to global health.”

A grim report released last year suggests that if bacteria keep evolving at the current rate, by 2050, superbugs will kill 10 million people a year.

While scientists are working to develop new antibiotics, that takes time, and experts encourage doctors and the public to focus on prevention efforts.

One of the most important ways to prevent antibiotic resistance is to only take antibiotics only when they’re necessary.

“Drug resistance like this [case] generally develops from too much exposure to antibiotics,” assistant professor of pediatrics at Johns Hopkins University School of Medicine and director of the Pediatric Antimicrobial Stewardship Program at The Johns Hopkins Hospital, told CBS News. “Every time you’re placed on an antibiotic it’s important to question if it’s absolutely necessary and what’s the shortest amount of time you can take this antibiotic for it to still be effective.”

Johnson notes that medical tourism – the practice of traveling to another country to obtain medical treatment, typically at lower cost – may no longer be worth the risk. “With this [antibiotic] resistance issue, the risk/benefit of this approach really changes and I think that people really need to be aware and seriously consider if it’s a good idea given the possibility of this kind of thing,” he said.

Frequent hand washing, particularly in healthcare settings, is also extremely important in preventing the spread of germs.

To read the article in its entirety please click on the link below to be redirected:

http://www.lasvegasnow.com/news/nevada-woman-died-from-superbug-resistant-to-all-available-antibiotics-in-us/640548775

A Study Provides Data That Between 2010 and 2011 Throughout U.S. At Least 30 Percent of Antibiotics Unnecessarily Prescribed

Antibiotics Unnecessarily Prescribed!

At least 30 percent of antibiotics are unnecessarily prescribed, contributing to the rise of debilitating and sometimes deadly bacteria-resistant superbugs, according to a study released Tuesday – May 3, 2016.

To reach this conclusion, researchers tracked antibiotic use in doctors’ offices and emergency departments between 2010 and 2011 throughout the United States. The study results were published in Journal of the American Medical Association by the Centers for Disease Control and Prevention along with Pew Charitable Trusts.

The findings showed that doctors needlessly wrote prescriptions for viruses, such as the common cold, viral sore throats and other ailments that can’t be cured with antibiotics. More than 47 million excess prescriptions put patients in harm’s way for allergic reactions and superbugs, such as Clostridium difficile, or C. diff.

“The rampant misuse of antibiotics is probably the leading infectious disease public health threat the world faces,” Dr. Amesh Adalja, a UPMC infectious disease specialist, said after learning of the study results. “The spread of antimicrobial-resistant bacteria and the infections they cause are a crisis and, if allowed to continue, will drag civilization back decades.”

Superbugs kill 23,000 Americans a year and sicken 2 million, according to the CDC.

Last year, the White House set its sights on superbugs, releasing a plan to combat the proliferation of antibiotic-resistant bacteria. The plan’s goal is to reduce outpatient antibiotic use by 50 percent and inpatient use by 20 percent by 2020.

To read the article in its entirety please click on the following link:

http://triblive.com/news/adminpage/10409989-74/antibiotics-antibiotic-doctors

Hand Washing aka Hand Hygiene While On a Journey

washhands2

“Spring Break” is upon us and it’s the perfect time for a road-trip!

 

Traveling is one of the most important times to pay close attention to “infection prevention.”

Being prepared can help.

During a recent journey along the east coast, in the USA, a few of the Foundation members had the opportunity to visit an array of public restrooms along the way.

As we are aware, public restrooms can be a challenge and a real eye-opening experience. Many of the facilities fell short in monitoring their supplies along with the monitoring of over-all cleanliness of their restroom.

During the road trip, along various interstates, back roads, and local towns, we began to assess the establishment’s public facilities based on the following criteria:

* Cleanliness.

* Supplies offered.

* Electronic hand drying devices vs traditional supplies.

* Cleaning/Room monitoring log.

As the journey continued the restroom grading system became the topic of conversation discussing the vast ways establishments can maintain a safe, clean, and friendly environment for their visitors.  There were also discussions on how a traveler can be prepared by carrying supplies to ensure their own safety when utilizing public facilities.

The following is a list of a few supplies easily kept in a small bag during travel times:

* A small container of liquid soap (preferably one without the anti-bacterial ingredients).

* A few paper towels dampened with bleach or pack a EPA Registered cleaning product to clean the commode and high-touch areas.  It is good safety practice to store the paper towels in a sealed plastic container.  Other cleaning (Germicidal/Disinfectant) product wipes should remain in their original container or sealed separately in a plastic container.   Never mix two cleaning wipes/products together or store in the same container.

* Sheets of T.P. or a small roll.

* Sheets of dry paper towels to turn off water faucets and dry hands.

*  Attempt to open the restroom door with an elbow or use a dry paper towel to pull the door handle open in order to keep hands clean and not re-introduce germs onto the hands.

Was there a favorite rest stop/establishment along the way?  Yes.

McDonalds restrooms were found to be acceptable and met the needs of the travelers. Their establishments focus on cleanliness, offered an adequate supply of soap with automated towel dispenser or hand dryers, and facility monitoring logs in place. Their organization also displayed signs over the sinks promoting hand hygiene, a public safety announcement for both staff, and visitors.

The public restrooms at rest-stops along I-95 were impressive with their focus on cleanliness, adequately filled soap containers, and hand dryers available in each restroom with the elimination of a main door to enter/exit the facility.  Once the hands are washed/dried the reintroduction to harmful germs upon exiting the public area from a door handle is eliminated.

There were a number of unacceptable facilities located in local discount stores, some food stores, food chain eateries, and quick-mart stations.  Their sinks were not automated with motion sensors and many with two handles, empty paper towel dispensers and automatic hand drying equipment unavailable. Many restrooms were without cleaning monitoring logs promoting safety and cleanliness to the staff (food handlers), and visitors alike.

We appreciate the availability and use of public restrooms during  long commutes, when on vacations, and time away from home.  Most establishments offer adequate supplies to eliminate, and  prevent the spread of harmful germs, however;  it is always best to be prepared.  The next time a journey is planned, do not forget to pack the supplies needed for a public restroom visit that will keep you and your family safe.

The journey and hand-washing experiences become part of the adventure.  Take the opportunity to report negative experiences to the management and help change a negative into a positive for the next person visiting.

Remember to take that twenty second hand-washing break before exiting a restroom, before/after eating, before/after entering a patient’s room, after changing diapers, before/after handling food, and during the day.   Let’s stop giving germs a free ride.

Here’s to everyone’s good health!

Below you will find links available for Public Restroom locators offered by Charmin, one app for an iPhone, and an app for an Android Phone. 

http://www.charmin.com/find-public-restrooms.aspx?utm_source=msn&utm_medium=cpc&utm_campaign=Charmin_Search_Desktop_Lifestyle_SoS+App&utm_term=restroom%20app&utm_content=SvExifYv_restroom%20app_p_2095916800&sctp=ppc&scvn=bing&scsrc=bing_search&sckw=na

* App For iPhone

https://itunes.apple.com/us/app/restroom-bathroom-toilet-finder/id311896604?mt=8

* App For Android

https://play.google.com/store/apps/details?id=com.bto.toilet